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Abstract
When humans walk, it is important for them to have some measure of the distance they have travelled.

Typically, many cues from different modalities are available, as humans perceive both the environment
around them (for example, through vision and haptics) and their own walking. Here, we investigate the
contributions of visual cues and non-visual self-motion cues to distance reproduction when walking on a
treadmill through a virtual environment by separately manipulating the speed of a treadmill belt and of
the virtual environment. Using mobile eye tracking, we also investigate how our participants sampled the
visual information through gaze. We show that – as predicted – both modalities affected how participants
(N = 28) reproduced a distance. Participants weighed non-visual self-motion cues more strongly than
visual cues, corresponding also to their respective reliabilities, but with some inter-individual variability.
Those who looked more towards those parts of the visual scene that contained cues to speed and distance
tended also to weigh visual information more strongly, although this correlation was non-significant,
and participants generally directed their gaze towards visually informative areas of the scene less than
expected. As measured by motion capture, participants adjusted their gait patterns to the treadmill
speed but not to walked distance. In sum, we show in a naturalistic virtual environment how humans use
different sensory modalities when reproducing distances, and how the use of these cues differs between
participants and depends on information sampling.
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New and noteworthy

Combining virtual reality with treadmill walking, we measured the relative importance of visual cues and
non-visual self-motion cues for distance reproduction. Participants used both cues, but put more weight
on self-motion; weight on visual cues had a trend to correlate with looking at visually informative areas.
Participants overshot distances, especially when self-motion was slow; they adjusted steps to self-motion cues,
but not to visual cues. Our work thus quantifies the multimodal contributions to distance reproduction.

Introduction1

Finding back to a place previously visited or knowing how much distance is left before reaching a target2

are fundamental to successful locomotion in many species (Mittelstaedt & Glasauer, 1991). One key aspect3

of these operations is the ability to reliably estimate the distance traveled. In humans, many sources of4

information about the walked distance can be used: Humans can estimate the distances to landmarks, for5

example, but even in the absence of these, other visual cues are available (Lappe et al., 1999; Thomson,6

1980), given for example by optic flow of the environment over time, as well as self-motion cues such as the7

number of steps taken, and otolithic or vestibular signals (Israël et al., 1997).8

The question then is how humans sample, use, and combine these cues to enable them to better navigate9

the environment. In real-world situations, one may remove one source of information to investigate its10

contribution to participants’ responses (Klatzky et al., 1990; Mittelstaedt & Glasauer, 1991), while in the11

lab, we can separately manipulate cues. This way, influences of both visual cues and non-visual self-motion12

cues on estimates of distances and speed have been shown (Campos et al., 2010; Durgin et al., 2005; Frenz &13

Lappe, 2005; Sun et al., 2004; Varraine et al., 2002). Their interactions can reduce the biases humans show14

when just one modality is available (Klatzky et al., 1990) and are well described by Bayesian cue combination15

(Chen et al., 2017; Nardini et al., 2008). Specifically, the modalities are combined with different respective16

weights depending on the task demands and the perceptual input. In short, manipulating what people see17

(Prokop et al., 1997) and what they feel (Sun et al., 2004) will affect how far they estimate to have walked.18

Of course, humans are not mere passive observers of the world they walk through and do not merely19

make estimates based on static information. As their position in the world changes, so does the viewpoint20

and the available information, while eye movements and attending to different aspects of the environment21

will further enrich information as walking continues. Again, both those factors have been shown to impact22

distance and speed estimates: It matters whether humans walk or passively cover a distance (Sun et al., 2004)23

and how they walk, for example whether they walk at a familiar speed or not (Mittelstaedt & Mittelstaedt,24

2001). Similarly, neural activity in the hippocampus and parahippocampal areas during wayfinding and25

navigation tasks has also been reported to differ depending on whether humans or animals cover distances26

themselves or are moved around passively (Lappe & Frenz, 2009; Terrazas et al., 2005; Winter et al., 2015).27

Unsurprisingly then, humans are most accurate during active, ‘normal’ walking with few constraints and a28

high-fidelity environment (Durgin, 2009). It also matters where they look, as an accuracy advantage has29

been found when optic flow is not seen in central vision but peripherally (Banton et al., 2005; Durgin et al.,30

2005). Further, distance estimates serve behaviours that may themselves give humans different information31

to compare their estimate to. In particular, just as it makes a difference whether humans cover a distance32

passively or walk it actively, it makes a difference whether they then compare this distance to something33

they estimate once (Mittelstaedt & Mittelstaedt, 2001), view and match (Caramenti et al., 2018), actively34
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walk again (Sun et al., 2004), reproduce observed distances at self-chosen speeds (Bremmer & Lappe, 1999),35

or perform a homing task in which one returns to a starting location (Harrison et al., 2022; Nardini et al.,36

2008). Indeed, such task differences affect not only how humans perform on the task at hand, but also37

to what degree they learn transfers to another task (Bruggeman et al., 2007). That said, task-dependent38

response patterns may still be consistent with shared mechanisms underlying the tasks (Lappe et al., 2007).39

To summarise, there is plenty of evidence that humans can gather speed and travelled distances from40

visual cues or from non-visual self-motion information, but perform substantially better when both sources41

of information are available. This is especially true when the task is to reproduce rather than to estimate a42

distance; that is, when the same kind of information is available during learning and reproduction. However,43

many open questions remain as to how the two sources of information are sampled, used, and weighed44

relative to one another. Visual sampling can be controlled by directing one’s gaze, but how relevant is45

the gaze direction for gathering visual information about speed and distance? One would assume that gaze46

matters, but perhaps not in the intuitive way that bringing optic-flow patterns into central vision is best. And47

if gaze not towards but past optic-flow patterns may be more adaptive, do participants still focus their gaze48

where most information is, as they typically do in walking (Hollands et al., 1995; Matthis et al., 2018)? Does49

the sampling of visual information modulate how it is weighed relative to non-visual self-motion information?50

In turn, how does gait influence the sampling of non-visual self-motion information and how it is weighed51

to judge distances?. Does gaze and do gait kinematics differ between learning and reproduction? And what52

are their differential roles in either phase? How are gaze and gait affected when visual and self-motion53

provide conflicting information about speed and distance? How are these cues then weighed and integrated54

to reproduce distance? We aimed to answer these questions in an experiment that had participants walk55

and reproduce distances in a virtual environment on a treadmill as we manipulated the treadmill’s speed as56

well as the speed of optic flow, and tracked participants’ head, body, and eye movements.57

In the present study, we investigated the roles of visual cues and of non-visual self-motion cues in distance58

reproduction. We abbreviate the latter cues henceforth as “self-motion cues” for simplicity; this term will en-59

compass all non-visual information, whereas the term “visual cues” will refer to all visual information, which60

includes visual cues modulated by participants’ self-motion (e.g., optic flow). We manipulated visual cues61

and self-motion cues independently in a high-fidelity setup, but without removing either modality and while62

having participants view a screen rather than a head-mounted display. This allowed us to address these63

questions in an environment in which we could expect participants to show relatively natural behaviour.64

Specifically, we could (i) isolate and model the respective contributions of visual information and self-motion65

information, (ii) test whether participants specifically attended to visual information about speed and dis-66

tance, and (iii) whether there is a relationship between sampling and weighing of information. We expected,67

as has been shown for speed perception and in navigation tasks, that both visual cues and self-motion cues68

affect reproduced distances, that the more reliable modality would be more heavily weighed, and that there69

would be a relationship between time spent sampling and weight given to visual motion cues.70

Methods71

Participants72

A total of N = 28 participants (mean age 25.7 years, 16 women and 12 men; mean height 177 cm ± a73

standard deviation of 10 cm, mean body mass 73 kg ± 15 kg, mean leg length 95 cm ± 5 cm) took part in74
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Figure 1: The GRAIL system and the participant view. a: Dual-belt treadmill, 240° projection screen,
and infrared Vicon cameras for visual presentation, motion capture, and force measurement throughout the
experiment. b: Participant view of the endless virtual road, with a count-down indicating a trial about to
start. The floor was a uniform green to prevent participants from counting or comparing the visual texture
with that of the treadmill belts, virtual walls on either side of the road moved to induce optic flow. c:
Example of a wall texture. d: Schematic depiction of a trial. The y-axis shows belt speed, x-axis shows
time. Learning phases were always 16 s long (including 1-s onset ramp), but differed in terms of belt speed
and visual gain. Reproduction phases were always at 1 m/s belt speed with a visual gain of 1, but differed
in length as they ended when the participant pressed a button. Recording started after the countdown and
with the start of the onset ramp and ended with the red screen and the start of the offset ramp.

our experiment. All participants had normal or corrected-to-normal vision and no walking impairments and75

were naive to the hypotheses of the experiment. They received course credit or 8€/h as reimbursement. We76

planned to include at least N = 24 participants to achieve 80 % power at a medium effect size of Cohen’s77

f = 0.25 and α = .05 (Cohen, 1988). We invited a small number of extra participants in case some data78

would need to be excluded due to missing eye-tracking or motion-capture data - this turned out not to be79

the case, so we analysed the full data set of N=28 participants. All procedures including data management80

were approved by the Chemnitz University of Technology, Faculty of Behavioural and Social Sciences ethics81

committee (V-421-PHKP-WET-GRAIL Distanz-15012021).82

Setup and procedure83

Participants walked on a dual-belt treadmill while viewing a virtual scene on a 240° screen placed 2.5 m84

ahead of the treadmill’s centre, in a Gait Real-Time Analysis Interactive Lab (GRAIL, Motek Medical,85

Amsterdam, Netherlands) while secured by a harness that was attached to the ceiling. Ten Vicon motion-86

4



Kopiske et al. Visual and self-motion cues to distance

capture cameras (Vicon Motion Systems, Yarnton, UK) were placed around the treadmill to enable full-body87

motion tracking. The virtual scene consisted of a green virtual road with brown brick walls on each side of88

it (4.5 m from the centre of the road, 3 m high; Figure 1). These walls were the only areas of the visual89

scene that contained information about motion and distance because of their moving irregular texture, while90

the ground was chosen to be homogenous providing no motion information. The wall consisted of bricks of91

irregular sizes (Figure 1c) between 0.6 and 1.3 degrees of visual angle (dva) wide and between 0.3 dva and92

0.6 dva high at the closest simulated distance of 4.5 m.93

Before each participant’s arrival, we calibrated the Vicon cameras. Participants then were instructed94

about the experiment, gave written, informed consent to take part and filled in a brief questionnaire, providing95

information on their age and gender (optional) as well as confirming that they had normal or corrected-to-96

normal vision, were healthy and alert enough to take part in the experiment. Then, participants changed97

into tight-fitting athletic apparel and we took anthropometric measurements such as body mass, height,98

and leg length, and applied 35 retro-reflective markers for a Vicon Full-Body model, always applied by99

the same experimenter for consistent measurements (McGinley et al., 2009). Participants then put on our100

mobile eye-tracking device, a pair of Tobii Pro Glasses 2 (Tobii AB, Stockholm, Sweden), which had four101

additional markers attached to track its position and orientation. Next, we calibrated first the body model102

using approximately 10 s of motion-capture consisting of a T-pose and light walking and then the Tobii103

glasses using a circle on a standard card provided by the manufacturer. This calibration was validated by104

having participants fixate 20 red dots presented in sequence on the screen. After eye-tracker validation, the105

experiment started, consisting of 55 trials of walking and then reproducing a distance. At the end of the106

experiment, another eye-tracker validation was performed, and the experimenter administered a structured107

interview consisting of nine questions regarding the experiment (see Table 3 in the appendix), the virtual108

environment, and any strategies participants might have used.109

Stimuli and manipulations110

Our virtual environment allowed us to manipulate not just the speed of the treadmill (which on each trial111

was running at either 0.8 m/s, 1.0 m/s, or 1.2 m/s), but also the gain at which the virtual scene was moving112

(0.667, 1.0, and 1.5) relative to the speed of the belt. This leads to a 3 × 3 factorial design with factors belt113

speed and visual gain and two control conditions in which only one source of information was provided, see114

Table 1.115

Each of the resulting 11 combinations was presented five times for 55 trials total per participant. The116

trial order was pseudo-randomised such that five blocks of 11 trials contained each combination exactly once,117

in randomised order, allowing participants to take breaks between blocks when necessary. A trial always118

consisted of a learning phase and a reproduction phase. The learning phase started with a 1-s countdown119

when the participant indicated that they were ready, followed by 16 s of walking (including an onset ramp120

of 1 s to accelerate the belt linearly to its target speed, see Figure 1d). The end was signalled by the121

visual scene being overlaid by a transparent red, at which point a 1-s linearly decelerating off-ramp started.122

Then followed a brief interval until the participant indicated they were ready for the reproduction phase.123

The reproduction phase again started with a countdown and a 1-s ramp to accelerate the belt to 1 m/s124

and lasted until participants pressed a button on a hand-held controller when they were satisfied that the125

distance matched the one during learning phase, at which point the screen again turned red and the belt was126

decelerated in a 1-s off-ramp (Figure 1d). Participants were not told in advance that visual and non-visual127

information could be incongruent, and thus not instructed to follow one source of distance information over128
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Table 1: Conditions in our experiments and their basic characteristics. Rows show gain, columns show belt
speed, so that each cell shows the resulting speed of the visual scene.

speed
-

gain

0 m/s 0.8 m/s 1 m/s 1.2 m/s

- 1 m/s 0 m/s
0.667 0.53 m/s 0.667 m/s 0.8 m/s
1 0.8 m/s 1.0 m/s 1.2 m/s
1.5 1.2 m/s 1.5 m/s 1.8 m/s

the other in the reproduction phase. All participants took at least one extended break after the third block129

of five and were allowed to take more. In total, an experiment lasted around 30 to 40 minutes, excluding130

preparation.131

Data processing and analysis132

We recorded the timing of participants’ button presses, as well as their eye and body movements. A total133

of 18 trials (1.2 % of all trials) had to be discarded due to technical difficulties. Motion-tracking data were134

recorded at 250 Hz throughout the experiment using the Vicon cameras, as were data from force plates135

under each treadmill belt. Eye-tracking data were recorded at 100 Hz using the Tobii glasses. To process136

and analyse motion-tracking and eye-tracking data, we largely followed the analysis pipeline from Kopiske137

et al. (2021), which used the same setup. Specifically, eye- and motion-tracking data were synchronised by138

identifying the time of trial onset in the eye tracker’s scene-camera video. We then applied a cubic-spline139

interpolation to the motion-tracking data to deal with missing data (on average, 0.3 % of frames contained a140

missing head marker; 1.5 % a missing pelvis marker; and 0.1 % a missing foot marker) and to down-sample141

it to 100 Hz so that it could be merged with the eye-tracking data. On average, a relatively low proportion142

of 4.5 % of eye-tracking data including blinks (Kopiske et al., 2021) were missing. These were interpolated in143

the same way as the motion-tracking data. Merged data were then smoothed using a third-order Savitzky-144

Golay filter (Savitzky & Golay, 1964) with a filter window of 110 ms. This allowed us to calculate gaze145

positions continuously in real-world coordinates.146

For robust step detection, force data on both belts were added and a Savitzky-Golay filter with 524147

ms width – wide enough to contain roughly one entire step, but never two – was applied. The peaks of148

the resulting force profiles were counted as step onsets. We verified this against an automated online step-149

detection algorithm using force threshold for foot-off and foot-down. We found that the methods matched150

perfectly (except for a somewhat displaced onset timing, which we did not analyse as it made no difference151

for any of our analyses) when participants walked on both belts, but that the offline algorithm using filtering152

was more robust when cross-stepping occurred (i.e., when participants placed both their feet on one belt).153

To calculate the length of each step, we computed the distance between the toe marker of the front foot and154

the heel marker of the hind foot at the time point of each step.155

Two measures were taken to ensure the validity of our gaze data: One, since the glasses typically did156

not sit perfectly horizontally on the participant’s head, the slope between head markers at the back and the157

front of the head would have given a biased estimate of the actual head inclination. We corrected for this by158

comparing the height of the horizon in the scene-camera videos as detected using a Hough transform (Duda159

& Hart, 1972) to the height inferred from motion-capturing data. From this, we computed a correction for160
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each participant. On average, the slope between the markers was -15.1 °. Two, we compared the position of161

the validation dots in the scene-camera videos to participants’ gaze position while fixating them and applied162

a corresponding correction. The mean absolute error was 0.9 ° vertically and 0.5 ° horizontally.163

This way, we obtained three main types of data for each trial: (i) Data of the reproduced distance, (ii)164

continuous gaze data in real-world coordinates showing us where participants looked while completing the165

task, and (iii) step lengths and step counts to determine if and how participants adjusted their gait. The166

reproduced distances were submitted to a 3 × 3 repeated-measures analysis of variance (rmANOVA) with167

factors belt speed (0.8 m/s, 1.0 m/s, 1.2 m/s) and visual gain (0.667, 1, 1.5) to assess whether each source168

of information had any impact on participants’ performance. To then get an estimate of how strongly each169

cue was weighed by each participant, we modelled the reproduced distance dr as a linear combination of the170

treadmill distance during learning (dm, for self-motion distance), optic-flow distance during learning (dv, for171

visual distance), and a static prior to account for each participant’s bias (Petzschner et al., 2015), which we172

modelled as consisting of a distance dp towards which the participant was biased, as well as a weight wp with173

which they weighed the bias towards this distance. Equation 1 specifies this model of what contributed to174

reproduced distance dr, while equation 2 and equation 3 show how to then calculate the weight of self-motion175

information (wm) and of visual information (wv), respectively. Each participant’s distance prior (dp) and176

prior weight (wp) were estimated following equation 4. Using the usual normalization that the three weights177

add up to 1, we can then calculate wm and wv for each trial where the gain was smaller or larger than one,178

that is, for each trial where dm ̸= dw. Specifically, the formula for dr179

dr = wmdm + wvdv + wpdp (1)

= wmdm + (1 − wm − wp)dv + wpdp

can be rewritten to give the parameters of interest, wm and wv, as a function of the participant’s prior180

dp, its weight wp, trial conditions (visual distance dv, self-motion distance dm), as well as the reproduced181

distance dr:182

wm = (dr − (1 − wp)dv − wpdp)
dm − dv

(2)

and183

wv = (dr − (1 − wp)dm − wpdp)
dv − dm

(3)

To estimate each participant’s prior (dp) and the prior’s weight (wp), we used the data from trials with184

a gain of 1, taking advantage of the fact that dm = dv allows us to simplify equation 1 to185

dr = dm(1 − wp) + wpdp (4)

Filling in the three unique values of dm and the corresponding averages for dr, we then obtained three186

linear equations with two unknown variables, wp and dp, which we fitted using the nls function in R (R Core187

Team, 2022). We bounded wp between -0.2 and 1.2 (rather than 0 and 1), since a hard bound at 0 could188

result in artificially observing mean weights larger than 0 due to statistical noise. For wv and wm (which189
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we did not need to fit, but obtained from equations 2 and 3), participant means also fell within this range190

when wp was bounded.191

Gaze allocation was analysed descriptively (Figure 4), as well as by looking at the proportion of gaze192

towards the walls in each trial, as this was where optic-flow information was shown. These values were then193

correlated with the visual weights to test the prediction that looking at the visually informative areas more194

would be associated with weighing visual information more strongly, as only the wall patterns provided visual195

information about distance. Gait parameters (step count, step length) were also assessed descriptively. All196

data and analyses are available at: https://osf.io/cbvpa/?view_only=c7b33fba59564ed68d0b740074448618197

Results198

trained distance (m)

re
pr

od
uc

ed
 d

is
ta

nc
e 

(m
)

12.4 15.5 18.6

12
14

16
18

20 control
0.667
1
1.5

Figure 2: Distances reproduced, by self-motion distances and visual gain, averaged across all N=28 partic-
ipants by computing the arithmetic mean first by condition and then across conditions. Colours indicate the
different visual gains, see figure legend. Black circle on the left shows reproduced distance in our "optic flow
only" condition, where the visual scene moved at 1 m/s, but the belt did not move at all, while the other
black circle (at trained distance = 15.5 m) shows the mean distance for the condition in which the belt speed
was 1 m/s but the visual scene did not move. Error bars indicate between-participant SEMs. Data points
for different visual gains are jittered on the x-axis to facilitate viewing, actual belt distances were identical
at 12.4 m, 15.5 m and 18.6 m for 0.8 m/s, 1 m/s and 1.2 m/s, respectively. Solid line indicates unity.

To investigate whether participants reproduced distances according to self-motion information or visual199

information, we analysed reproduced distances, participants’ gaze, and participants’ steps; where they looked200

while doing so, and if this affected the way they reproduced distances; and how they adjusted their gait to201

reach different speeds and distances.202
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Figure 3: a: Histograms of modelled weights for visual cues, self-motion cues, and the distance prior, by
participant (N=28). We see that on average but not for all participants, self-motion cues and to a lesser
degree the prior are weighed more strongly than visual cues. Weights calculated according to formulas 2,
3, and 4. b: Weights for visual information, by participant, plotted against proportion of gaze directed
towards the virtual walls. Each dot represents one participant. We see a large amount of inter-individual
variability in gaze allocation, with some participants looking predominantly towards the walls, while others
never looked towards them. Data from trials in which belt speed or visual gain was 0 are excluded, since
no weights could be calculated for these. We show averages across all trials (excluding those with gain =
1), each circle represents one participant. c: Proportion of gaze towards the walls during learning phases
and during reproduction phases, by participant. Shown are averages across all trials, each circle represents
one participant. Solid line indicates unity. We see that virtually all participants were very consistent in how
much they gazed towards the walls of the virtual scene with very similar proportions during learning phases
and during reproduction phases.

Combining self-motion and visual information203

To investigate the impact of self-motion (treadmill distance) and visual information (optic-flow gain) during204

the learning phase on how far participants walked during reproduction, we submitted the time until par-205

ticipants pressed the button during reproduction to a 3 × 3 rmANOVA with factors belt speed and visual206

gain. As expected, we found main effects of both belt speed, F(2, 54) = 64.07, p < .001, and of visual gain,207
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Table 2: Within-participant means and standard deviations for visual weight. Third column shows the
means and standard deviations across participants for the within-participant mean of visual weight for each
combination of belt speed and visual gain.

visual gain belt speed visual weight, mean (SD)
0.667 0.8 0.22 (0.43)
1.5 0.8 0.03 (0.35)

0.667 1 0.17 (0.41)
1.5 1 0.04 (0.27)

0.667 1.2 0.15 (0.41)
1.5 1.2 0.09 (0.26)

F(2, 54) = 11.37, p = .001. There was no interaction, F(4, 108) = 0.86, p = .435. Specifically, participants208

reproduced a longer distance both when the walked distance was longer and when optic flow was faster209

(Figure 2). On average, participants tended to overshoot the distance (Figure 2), but less so the faster the210

belt speed was, such that they were almost perfectly accurate at the fastest speed used in our experiment,211

1.2 m/s. The mean slope of the response function dr ~ dm was 0.8 ± 0.47 (standard deviation), significantly212

different from a slope of 1 (t(27) = 2.23, p = .035).213

To quantify the influence of each factor, we modelled the reproduced distances following equation 1,214

which allowed us to get estimates of participants’ weights of visual cues (wv) and of self-motion cues (wm),215

as described in equation 2. Again as expected, self-motion information was weighed more strongly, with a216

mean wm of .60 ± .32, compared to a mean wv of .10 ± .13. In fact, only two participants weighed visual217

information more strongly, and all but three participants weighed self-motion information at least twice as218

strongly, see also Figure 3a. That said, the mean wv was still statistically significantly different from 0, t(27)219

= 3.92, p < .001. Consistent with the notion that more reliable cues are also weighed more strongly (Landy220

et al., 1995), we found that the mean standard deviation in trials in which participants had only visual cues221

was higher numerically than in those in which only self-motion cues were available (2.57 m to 2.07 m, t(27)222

= 1.67, p = .107). Note that since these unimodal cases would also contain variability from the prior, which223

can only be estimated very noisily from relatively few trials, we refrained from attempting to isolate these224

variances and standard deviations and compute Bayesian model predictions. We show within-participant225

means and standard deviations of wv in Table 2 as an estimate for how variable the use of vision was226

depending on the condition. Weights and their respective standard deviations were numerically higher when227

the visual gain was low, indicating that when the belt was moving faster than the visual scene, participants228

tended to use the visual information more, but also in a more variable manner.229

Sampling visual information for walking230

Combining eye-tracking and motion-tracking data allowed us to analyse participants’ gaze in real-world231

coordinates. Gaze maps for different types of trials can be seen in Figure 4, showing that participants232

tended to fixate close to the horizon, but also directed their gaze to each side a substantial amount. We233

also specifically determined what proportion of the time participants looked at the walls on each side of234

the endless road (with a tolerance of 2 degrees to account for measurement inaccuracies and the size of the235

fovea), as in our scene only these regions contained a texture that moved in accordance to the movement of236

the virtual camera and thus information about speed and distance (the road was uniformly green, see Figure237

1). On average, participants looked at the road and towards the horizon much more than the walls, but238
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Figure 4: Gaze maps of eye-in-world positions, across all participants (N=28), by condition. Data from
learning phases are split up by visual speed (labelled v) and the gain factor for self-motion, that is, for the
belt speed (m). Data from reproduction phases are collapsed since here, both speeds were kept constant
at 1 m/s. Dashed lines indicate the outlines of the virtual road and horizon, solid black outlines indicate
areas where gaze was allocated 20 % (inner outline) and 80 % (outer outline) of the time. We see most gaze
directed towards the virtual horizon, as well as the upper halves of the virtual walls.

with considerable inter-individual variability (mean proportion gaze on wall: 21.1 %, ± 20.7 %; see Figure239

3b). Compared to this, there was relatively less intra-individual variability, with a mean within-participant240

standard deviation of 11.5 %. Gaze-on-wall proportions barely differed between learning phase (20.6 %, ±241

20.1 %) and reproduction phase (21.5 %, ± 21.3 %), with the two being very highly correlated on a trial-wise242

basis (r (1520) = .90) and almost perfectly per participant at r (26) = .99 (see Figure 3c).243
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We also expected that spending a longer time looking where visual information was given would cause244

participants to weigh this information more strongly. We found a weak correlation between the proportion245

of gaze towards the walls and wv of ρ = .32, which was not statistically significant, p = .097 (Spearman’s246

rank correlation), see Figure 3. That said, looking at the walls more did not necessarily make participants247

better at estimating visual distance, as there was virtually no relation between a participant’s variance of248

reproduced distances in vision-only trials and the participant’s proportion of gaze towards the walls in those249

same trials, ρ = .02, p = .91. When considering the correlation between wv and gaze towards the walls in250

each participant individually, we do not see any consistent relation that trials where the walls were fixated251

more had higher visual weight, either: this correlation ranges between -.48 and .31 across individuals with a252

median of ρ = 0.02 and mean (ρ = .01) that is indistinguishable from zero, t(27) = 0.26, p = .796.253

Gait adjustments254

belt speed (m/s)

st
ep

 le
ng

th
 (

m
)

a

control
0.667
1
1.5

0.8 1.0 1.2

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

belt speed (m/s)

st
ep

 fr
eq

ue
nc

y 
(H

z)

b

0.8 1.0 1.2

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

Figure 5: Step length and step frequency during learning phases, by condition, averaged across all N=28
participants by computing the arithmetic mean first by condition and then across conditions. Colours
indicate the different visual gains, see figure legend, error bars indicate between-participant SEMs. Data
points for different visual gains are jittered on the x-axis to facilitate viewing, actual belt speeds were
identical. Dashed horizontal line shows parameter mean during reproduction phase. a: Average step length,
showing mild scaling with belt speed. b: Average step frequency, also scaling with a slope below unity.

Finally, we assessed how participants adjusted their gait when walking at different speeds during learning,255

as well as when controlling the distance walked during reproduction, where different patterns have been found256
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(Durgin et al., 2007). We found that both step length and step frequency were adjusted when the belt was257

running at different speed (see also Figure 5): Participants’ mean step length increased from 74.8 cm to258

79.4 cm to 83.9 cm as belt speed increased from 0.8 m/s to 1.2 m/s. At the same time, step frequency259

also increased from 1.25/s to 1.37/s to 1.47/s. Meanwhile, optic flow had virtually no impact on either260

measure, with mean step length varying only between 79.2 cm and 79.5 cm between different visual gains,261

and corresponding step frequencies ranging from 1.35/s to 1.37/s. Two 3 × 3 rmANOVAs with dependent262

variables step length and step frequency corroborated these findings, as the factor belt speed had a main effect263

on both variables (on step length, F(2, 54) = 242.30, p < .001, and on step frequency, F(2, 54) = 46.78, p264

< .001), which was not the case for visual gain (neither on step length, F(2, 54) = 0.89, p = .397, nor on265

step frequency, F(2, 54) = 0.35, p = .710).266

During reproduction, we saw that neither step length nor step frequency correlated strongly with the267

reproduced distance. Within each participant, the mean correlation between step frequency and reproduced268

distance was rd,SF (26) = -.13, p = .51, and rd,SL (26) = .02, p = .91 for step length. Rather, the deciding269

variable was number of steps, as a longer reproduced distance was highly correlated with more steps taken270

(mean correlation within each participant: rd,SC (26) = .71, p < .001).271

Post-experiment interview and reported counting strategy272

In our structured interview administered after the experiment, 20 out of 28 participants reported when273

prompted that they had noticed that visual and belt speeds were not always congruent. Six participants274

did not notice this, while two were not sure. Other mentions of things that participants noticed included275

different belt speeds in learning and reproduction, respectively, and pixel aliasing at the walls’ edges and the276

virtual horizon.277

When asked about how they attempted to solve the task, the most frequent response was counting steps278

(16 out of 28), followed by comparing belt speeds between learning and reproduction (9 mentions). Other279

strategies included estimating the time (5), paying special attention to the moving walls (5), and walking in280

a certain rhythm (3). Of these, only counting steps appeared to be descriptively an adaptive strategy, with281

the mean absolute error reduced from 2.9 m to 2.2 m, although a Welsh’s two-sample t-test revealed that this282

difference was not statistically significant, t(17.34) = 1.58, p = .133. Similarly, the mean standard deviation283

for each condition was also descriptively lower among participants who counted their steps compared to284

those who did not (2.3 m to 2.9 m), but this difference was not statistically significant, either, t(25.93) =285

-1.26, p = .219.286

To analyze whether the reported strategy of step counting was indeed effective, we compared participants287

who reported to have counted steps (“counters”) to participants who did not count steps (“non-counters”).288

At a constant step length, counting steps would yield a correct distance reproduction only if the number of289

steps was adjusted for belt speed. Alternatively, reproducing the step count exactly would yield a correct290

distance reproduction only if step length scaled with belt speed. To assess whether participants used either291

of these strategies, we first compared the number of steps in learning to reproduction. At 0.8 m/s belt speed292

(Figure 6a), on average participants had a count ratio of 0.95 (0.95 for counters, and 0.94 for non-counters)293

between learning and reproduction, with no difference between counters and non-counters (t(19.81) = 0.05,294

p = .960). This is below unity, but above the 0.8 ratio (dotted line in Figure 6a) expected for constant step295

length. For 1 m/s (Figure 6b) the deviation between learning and training on average was 1.03, with no296

difference between counters and non-counters (1.00 and 1.07, respectively, t(16.94) = 1.38, p = .185). For297

1.2 m/s (Figure 6c), there was a shift above unity (mean ratio: 1.11, counters: 1.08, non-counters: 1.17, no298
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Figure 6: Steps and reproduction errors, by reported step-counting strategy. Top left, a-c: Mean steps
taken in the learning phase (x-axis) and the reproduction phase (y-axis), split up by participant (N=28), belt
speed, and by whether participants reported counting their steps (light blue) or not (light red). Solid line
indicates unity, dotted line shows a slope corresponding to the ratio of learning-phase speed to reproduction-
phase speed, so a participant with no error and constant step length would be on this line. Bottom left, d-f:
Mean error (y-axis) plotted against the error predicted if each participant had in each reproduction phase
merely reproduced the number of steps during learning phase with their average step length for a self-motion
speed of 1 m/s (x-axis). Diagonal line indicates unity, colours as in panels a-c. g: Mean absolute error, by
participant. Each circle represents one participant, colours as in other panels. X-axis shows the expected
absolute error if each participant had in each reproduction phase merely reproduced the number of steps
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statistically significant difference, t(16.31) = 1.29, p = .215), which remained below the ratio (1.2) needed299

at constant step length. In sum, the reproduction of steps was adjusted to belt speed, similarly in counters300

and non-counters, but not to an extent that step length would not need adjustment (see also Figure 5).301

In turn, the distance reproduction error could not be explained by participants reproducing the number of302

step counts using an average step length, as there was no systematic relation between the thus predicted303

error and the actual reproduction error (Figure 6d-f), consistent with the fact that step length increased304

slightly with higher belt speeds (Figure 5a). We neither observe a systematic over- or underestimation nor305

a marked difference between counters and non-counters. However, it is noteworthy that the most extreme306

errors arose for non-counters. This is even more evident when performing the same analysis but considering307

the absolute error pooled across all belt speeds (Figure 6g), which is possible as there is no systematic over-308

or underestimation tendency. The three participants with the highest error were non-counters, but beyond309

this, there are few patterns to be seen. This illustrates that counting steps was only a small aspect of our310

task, even among those participants who reported using it as a strategy.311

Finally, we also asked participants whether they paid special attention to any part of the visual scene.312

Only two participants answered no, among those who responded yes, by far the most frequent responses were313
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the walls and the virtual horizon (12 each). Other participants mentioned looking at the pixel aliasing (3),314

the clouds (2), edges of the walls (2), and one participant reported looking at the motion-tracking cameras.315

Note, however, that responses of having paid attention to the walls were only weakly and non-significantly316

associated with the proportion of gaze actually directed at walls (24.7 % compared to 17.2 % for other317

participants, t(22.33) = 0.92, p = .367).318

Discussion319

When walking over a flat surface, humans typically do not need vision. They can walk fine with their320

eyes closed, and will even have some idea of how far they have walked based on non-visual self-motion321

cues alone, a critical bit of information for finding one’s way. However, vision helps by providing additional322

information about one’s position and movement. Here, we investigated to what degree vision and self-motion323

cues, respectively, affect performance in a distance-reproduction task, how this was related to gaze patterns,324

and how participants walked at different speeds and to reproduce different distances. Our setup allowed325

us to investigate these question by manipulating vision and walking speed independently in a virtual but326

naturalistic environment in which participants could move their eyes freely through the real world while327

walking, yet received only experimentally controlled visual cues to distance. As expected and in line with328

previous results, we found that both visual cues and self-motion cues matter for reproducing distances.329

This was true across a range of walking speeds, with participants being most accurate (i.e., overshooting330

the least) at the highest tested walking speed (1.2 m/s). Self-motion cues were more reliable and weighed331

more strongly than optic flow, with participants who directed their gaze towards visual information more332

descriptively showing some tendency to also weigh vision more. Gaze was directed mainly towards the333

horizon, with some participants focussing mainly on the virtual walls where a repeating pattern provided334

cues to speed and distance, both in learning and reproduction phases. Gait patterns differed during learning335

phases depending on belt speed, with both step length and step frequency increasing for higher speeds.336

During reproduction, neither of these two parameters differed by trial type, as participants reproduced337

longer distances purely by walking more steps. Indeed, our structured interview revealed step counting to338

be a common explicit strategy.339

We found that across participants, self-motion cues (belt speed) were weighed much more strongly than340

visual cues (optic flow given by the virtual walls), which is consistent with prior work (Campos et al.,341

2010, 2012) and partly explainable in a Bayesian framework: Here, one would expect different sources of342

sensory information to be combined by weighing each according to their reliability (Landy et al., 1995),343

and indeed, trials in which participants relied only on visual motion were descriptively more variable than344

those where participants had only self-motion information available. The pattern could also be driven345

partly by participants deliberately focussing primarily on the motion of the treadmill rather than the visual346

environment, as we also note that many participants reported using some motion-cue based strategy to347

reproduce distances, such as counting steps, but only very few reported incorporating visual cues into any348

explicit strategy.349

That said, both the rmANOVAs and the modelling of weights clearly show that visual cues had a small,350

but persistent effect on reproduced distances and most participants completed the task not solely based on351

self-motion cues – despite the fact that visual cues were presented only in a pre-defined area of the visual352

scene. This finding that both self-motion and the motion of the visual scene matter is in line not just353

with the distance-perception and navigation literature, but also object perception during walking. Here, it354
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has also been reported that both vision and non-visual self-motion cues contribute to estimation of object355

motion (Fajen & Matthis, 2013), and that participants’ estimates are inaccurate once either is removed (Xie356

et al., 2020). Along these lines, we see not only that participants responded to visual information, they also357

reproduced distances less accurately when vision was uninformative – i.e., overshot the distance more in the358

control condition with visual speed set to 0 (Figure 2).359

Our visual scene (Figure 1) offered three major advantages: One, we could easily manipulate its moving360

speed independently of the treadmill’s belt, two, since only the virtual walls contained a pattern, only that361

part of the scene provided any optic flow and thus visual cues to speed and distance, and three, since we used a362

screen and not a head-mounted display, participants experienced real, non-simulated changes to visual input363

following head and eye movements, enhancing the scene’s naturalness. The environment thus allowed us to364

analyse directly when participants looked towards those areas, and whether this affected their behaviour.365

Most participants mainly looked ahead, as they would during normal walking (Hart & Einhäuser, 2012;366

Matthis et al., 2018), as opposed to towards the more informative walls to sample relevant visual information367

(Domínguez-Zamora et al., 2018; Marigold & Patla, 2007), although walking was sufficiently easy that there368

was no need to look in front of one’s feet. This pattern was the same in learning phases and in reproduction369

phases – despite considerable inter-individual variability in how much the walls were gazed towards (Figure370

3), participants were remarkably consistent in their individual tendencies. We know that humans may still371

detect motion well in the periphery (McKee & Nakayama, 1984) and in previous works (Banton et al., 2005)372

it has even been suggested that optic flow may even be more useful in the periphery as opposed to the fovea373

- perhaps indicative of participants using lamellar flow. Fixating the centre of the screen also has the benefit374

that optic flow is present in both sides of the visual field rather than just one, albeit peripherally. Note,375

however, that while humans can detect self-motion from both, perceiving optic flow centrally and perceiving376

lamellar flow in the periphery are considered separate systems that have different properties with respect to377

both detecting direction (Crowell & Banks, 1993; Warren & Kurtz, 1992) and detecting speed or distance378

(Harris et al., 2012; McManus et al., 2017). We also would have expected the relatively fine-grained textures379

of our virtual walls to make fixation necessary to extract movement, so another possible interpretation is380

that looking towards them briefly was sufficient. Critically, there was only a non-significant correlation381

between the proportion of time a participant looked towards the walls and how strongly they weighed visual382

information. In contrast, if participants relied heavily on the information gained from fixating the walls383

to perform the task, a much clearer relationship would be predicted. This may, however, deserve further384

investigation. We also found no evidence of an advantage of optic flow in the periphery or the fovea, as385

the proportion of gaze towards the walls was virtually uncorrelated with performance. We should note that386

participants were not instructed to look towards any part of the visual scene in particular, and in fact not387

even about the fact that the visual scene could provide information beyond the belt. There is also the388

practical consideration that walking on a treadmill necessitates very straight walking, which can be difficult389

when looking far to one side, as participants typically tend to veer to the side they gaze towards (Cutting et390

al., 2002). Certain participants nevertheless reported using the virtual walls as a cue for the task, but some391

others did not even notice the discrepancy between visual and belt speed, even with gain values of 1.5 and392

0.667. Note that it has been reported that participants tend to perceive a slightly faster visual scene (i.e.,393

gain > 1) as equal to a given belt speed (Caramenti et al., 2018; Durgin et al., 2005; Pelah & Barlow, 1996),394

but this would only explain difficulties detecting the mismatch for gain = 1.5, not for gain = 0.667.395

We also found that participants tended to overshoot distances, consistent with previous results (Banton396

et al., 2005; Mittelstaedt & Mittelstaedt, 2001) – though this tendency is task-dependent (Lappe et al.,397
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2007) – while also replicating the finding that accuracy differs by walking speed, as average overshoot was398

highest in trials with 0.8 m/s belt speed and almost zero in 1.2 m/s trials. Previously, it has been suggested399

that participants may perform best at speeds they are most accustomed to (Mittelstaedt & Mittelstaedt,400

2001), which would be plausible for the speeds tested here. Gait patterns reflected the different speeds in401

the learning phases, as both average step length and average step frequency increased at higher speeds. The402

same was not true for reproduction phases, as participants adjusted the distance walked purely through the403

number of steps, which is unsurprising given that walking speed – the main variable affecting step frequency404

(Grieve & Gear, 1966) – was constant in reproduction phases. In fact, counting steps was by far the most405

frequently reported strategy to solve our task. We note that for this strategy, adjusting step length during406

learning phases is actually not adaptive, as a constant step length would allow this strategy to work across407

different speeds, and such behaviour had previously been reported (Durgin et al., 2007).408

On the topic of strategies, another frequent strategy other than counting steps was looking at the virtual409

walls. A number of other strategies were mentioned, such as paying attention to the cadence of walking,410

but, interestingly, most showed at best a very moderate relation to participants’ behaviour. Even reporting411

that one paid attention to the walls was not very strongly correlated with time directing one’s gaze towards412

the wall, which is in line with previous findings that participants often misjudge where they looked (Võ et413

al., 2016), and only step counting showed any measurable performance benefit to the participants. Thus,414

while the results of our structured interview are a valuable window into how participants went about the415

reproduction task, they do not tell us much about which ways would have been more beneficial – in line with416

the fact that walking is, in large part, not cognitively controlled (Varraine et al., 2002). In fact, gait patterns417

were remarkably unresponsive to any manipulations other than belt speed, as even though our visual gain418

had clear effects on the reproduced distances, none were visible on gait.419

There are, of course, a number of factors that limit the generalisability of our study. For one, both the420

use of cues (Harrison et al., 2022) and sampling of visual information in walking (Tong et al., 2017) are421

task-dependent. We used a reproduction task here, as we see it as the most ecologically valid task, but of422

course, an estimation task may have produced different patterns. There is also our use of a treadmill and423

a very specific virtual scene. Treadmill walking has been shown to differ from regular walking (Dingwell et424

al., 2001), and specifically also with respect to distance and speed perception (Durgin et al., 2007; Solini425

et al., 2021). We would argue that our environment is rather high-fidelity for a virtual environment as it426

contains not just optic-flow patterns but a real environment in which participants can move their heads427

and eyes, and we have previously found patterns very similar to real-world situations in this very setting428

(Kopiske et al., 2021). That said, another reason to vary the complexity of the visual scene might be to429

investigate this factor’s impact on eye movements – while our design had the advantage of allowing us to430

see clearly when participants fixated the informative areas of the scene, i.e., the walls, this could have made431

eye movements less natural. Another obvious variation of the present experiment that could allow broader432

generalisation would be to have participants choose their own walking pace, both in learning phases in certain433

trials and in reproduction phases. This would allow them to employ more strategies, eliminate the difficulty434

of choosing speeds that work for all participants (nearly) equally well and enhance performance (Mittelstaedt435

& Mittelstaedt, 2001), and provide an even more natural setting, thereby promising many further insights436

into how humans are able to walk a certain predefined distance. In such a design, a strategy such as step437

counting might in fact be even more adaptive as the belt would not force participants towards a certain438

gait – this would remain to be investigated, perhaps in conjunction with a secondary task to prevent step439

counting.440
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We conclude that humans use both visual cues and non-visual self-motion cues to reproduce distances.441

Quantifying their relative contributions showed the greater importance of non-visual self-motion cues in the442

task we employed. Gaze measures were correlated with responses and cue weights, but only weakly and non-443

significantly, as were strategies. These findings shed an important light on sensory integration, information444

sampling, and the use of strategies in distance reproduction.445
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Appendix450

Following the main experiment, we conducted a structured interview with each participant. The purpose of451

this interview was to assess whether participants were aware of the manipulations in the main experiment,452

and whether they had used deliberate strategies to complete the main task. The original questions (in453

German) are provided, in the order they were administered, along with their English translations in Table454

3.455

Table 3: Questions of the structured interview administered directly after the experiment.

German (original) English translation

Ist Ihnen irgendetwas aufgefallen? Did you notice anything?
Welche Strategien haben Sie angewandt, um die
Aufgabe zu lösen?

Which strategies did you use to complete the
task?

Haben Sie auf einen speziellen Teil der
Landschaft geachtet?

Did you pay attention to a particular part of the
scene?

Haben Sie irgendwo besonders hingeschaut? Did you look anywhere in particular?
Haben Sie das während des Versuchs geändert? Did you change this over the course of the

experiment?

Haben Sie versucht, Ihr Gehen der Aufgabe
anzupassen?

Did you try to adapt your gait to the task?

Haben Sie bemerkt, dass die Landschaft sich
anders bewegt hat als das Laufband?

Did you notice that the environment moved
differently from the treadmill?

Wenn ja: langsamer oder schneller? If so: faster or slower?
Haben Sie versucht, Ihre Schritte zu zählen? Did you try to count your steps?
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