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ABSTRACT – Humans adjust their motor actions to correct for errors both 1 

with and without being aware of doing so. Little is known, however, about 2 

what makes errors detectable for the actor. Here, we replicate and extend 3 

prior work showing that motor adjustments may mask the very errors they 4 

correct for. We also investigated pupillometry as an unobtrusive no-report 5 

marker of perturbation detection. N=48 participants grasped objects while a 6 

visuo-haptic size mismatch was applied either sinusoidally or abruptly. When 7 

mismatches started abruptly and thereafter stayed the same, participants 8 

adapted well but also showed decreasing discrimination performance and 9 

decreasing confidence in their responses. This was not the case for 10 

sinusoidally introduced perturbations. We also show that parameters that 11 

characterize phasic and tonic pupil responses were predicted by stimulus 12 

parameters and differed depending on participants’ grasping and behavioral 13 

responses. However, predicting response characteristics from pupil-dilation 14 

features using support-vector machine classifiers was not successful. This 15 

shows that while pupillometry may yet prove to be a useful no-report marker 16 

of perturbation and error detection, there are some challenges for trial-by-17 

trial prediction. 18 
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 23 

Introduction 24 

Visuomotor mapping and forward mechanisms in motor actions 25 

Imagine that a friend brings you an unusually shaped, extravagant cup from their vacation (Fig. 26 

1). The handle is positioned slightly upper, the diameter is larger, and the shape differs 27 

significantly from your usual cup, shifting its center of mass. As you drink your morning coffee, 28 

you notice that you frequently misreach, fail to grasp the handle correctly, or bump your hand 29 

against the rim. It becomes clear: you need to adapt to this new cup. But why does this process 30 

seem so challenging? 31 

The key to this improvement is sensorimotor adaptation. This process describes how the brain 32 

adjusts movements such as grasping actions to altered conditions (Krakauer & Mazzoni, 2011). 33 

Several components must interact on a physical level: joints in the shoulder, elbow, wrist, and 34 

fingers need to be precisely coordinated to securely grasp the cup. Simultaneously, the physical 35 
properties of the cup – its mass, shape, orientation, and size – affect hand positioning. This 36 

physical adjustment is guided by a neural system that translates perceptual information into 37 

motor commands, a process known as perceptual-motor mapping (Warren, 2006). 38 

Computationally, it is typically modelled with so-called internal forward mechanisms: Based on 39 

the current position and movement of the hand, the brain generates a prediction of where the 40 

hand will land on the object – in this case, on the handle of the new cup. This prediction is 41 

compared with sensory feedback, which provides information on where the hand actually landed 42 

on the object (Miall & Wolpert, 1996). If there is a mismatch, the brain receives an error signal, 43 

and an adjustment is made to avoid the error in the future. This explains why grasping the new 44 
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coffee cup becomes easier with each attempt: The mapping is updated with each movement, 45 

improving the grasp over time and increasing the likelihood of a successful, fluid grasp (Wolpert 46 

et al., 1995). Eventually, your movements become as accurate as before. 47 

 48 

Figure 1: An unusual coffee cup.  49 

Implicit and explicit processes in adaptation 50 

The adjustment or correction of the grasping movement is considered in large part as an implicit 51 

learning process, that is, outside of cognitive control (Mazzoni & Krakauer, 2006) and controlled 52 

largely by forward models in the cerebellum (Shadmehr et al., 2010). However, explicit, 53 

deliberately controlled processes have also been shown to influence motor adaptation (Taylor & 54 

Ivry, 2011), allowing for rapid, consciously controlled or even strategic adjustments to correct 55 
for errors, with central involvement of memory areas such as the medial temporal lobe 56 

(McDougle et al., 2022). In contrast, implicit learning proceeds more slowly, and without the 57 

actor being consciously aware of them. These processes work in tandem, responding to different 58 

error signals – both the conscious correction after the first attempt and the unconscious 59 

adaptation that occurs over time – and together they optimize motor adaptation to 60 

perturbations (McDougle et al., 2016; Taylor et al., 2014). 61 

In experimental research, these two processes have been separated by specific experimental 62 

manipulations, such as distracting participants from the presence of perturbations (Mariscal et 63 

al., 2020) or by providing them with explicit instructions to compensate for perturbations 64 

(Miyamoto et al., 2020; Taylor & Ivry, 2011). However, in real-world situations, no instructions 65 

are provided, and motor errors are detected based only on their inherent characteristics – if at 66 

all. Research has investigated adaptive behaviors when perturbations were intentionally made 67 

very large (Hudson & Landy, 2012), when participants received identical feedback regardless of 68 

whether their movement was accurate or erroneous, known as a “clamp” perturbation 69 

(McDougle et al., 2015), or when perturbations were introduced abruptly rather than gradually 70 

(Modchalingam et al., 2023; Orban de Xivry et al., 2013). In all these cases, conditions were 71 

chosen such that perturbations should be detected in one condition but not in another (or at 72 

least far more frequently in one condition). Much less research, however, has investigated when 73 

participants can perceive inherent properties of perturbations. 74 

One example of this is a study by Gaffin-Cahn and colleagues (Gaffin-Cahn et al., 2019). Here, 75 

participants performed a reaching task with distorted endpoint feedback and judged whether 76 
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the endpoint shown to them was the result of their own movement. Participants were able to 77 

identify the perturbations, relying primarily on visual endpoint feedback and less on 78 

proprioceptive cues, which indicates that different external factors are weighed differently. Other 79 

studies have investigated metacognitive judgements about motor errors: That is, the extent to 80 

which participants notice and are confident about motor errors during their movements. Pereira 81 

and colleagues (Pereira et al., 2023) had participants perform a target task using a joystick, while 82 

deviations in cursor movement were experimentally introduced. Participants indicated if they 83 

had noticed a deviation and rated their confidence in their decisions while neural activity was 84 

recorded using fMRI. Results showed that participants could adjust confidence in their decisions 85 

according to the accuracy of their responses, even when they were unaware of the deviations. 86 

Similarly, Arbuzova and colleagues (Arbuzova et al., 2021) showed metacognitive awareness of 87 

motor errors during a virtual ball-throwing task. This suggests a level of metacognitive 88 

awareness based on visuomotor information even in the absence of conscious awareness of 89 

errors, although error history might play a crucial role in it (Hewitson et al., 2023).  90 

To examine directly which factors affect perturbation detection, a previous study that our 91 

experiments are based on (Mu ller et al., 2025) investigated how a size mismatch between a 92 

visible and an invisible target cuboid, as well as the sensory error signal (the difference between 93 

the expected and actual haptic grip feedback), affect motor adaptation and mismatch 94 

discrimination in a grasping task. Two types of perturbations were used: an abrupt perturbation, 95 

where the mismatch between cuboids was introduced in the first trial and then remained 96 

constant, and a sinusoidal perturbation, where the mismatch varied in each trial. Participants 97 

were instructed to indicate in a two-alternative forced-choice (2AFC) task whether the grasped 98 

cuboid was larger or smaller than the visible one, founding that discrimination performance 99 

gradually declined when participants adapted their grip to the mismatch for abrupt 100 

perturbations. However, with a continuously changing mismatch (sinusoidal) without 101 

systematically decreasing error signal, discrimination performance remained constant.  102 

Pupillometry as a physiological measure of perception 103 

To directly capture participants' perception of a perturbation, they must be asked (e.g., “Was the 104 

object you saw smaller or larger than the one you felt?”, or "Where will your pointing movement 105 

land?"). However, this can be challenging, as those same questions alert participants to the 106 

perturbations, and with typical adaptation schedules, repeated responses might cause 107 

uncertainty, influencing the participants’ answers (Bosch et al., 2020). Therefore, it may be 108 

useful to employ alternative methods espousing direct responses from the participant, such as 109 

physiological correlates. 110 

Pupillometry has served as a way around requiring participants to report their perception 111 

altogether and to circumvent the issues that come with this. For example, Einha user and 112 

colleagues (Einha user et al., 2008) demonstrated that pupil responses could serve as an 113 

indicator of perceptual selection in multistability, such as the perception of a Necker cube, as 114 

pupil size correlated with perceptual changes. It has also been used as a no-report marker of 115 

perception in binocular rivalry (Naber et al., 2011). Results like these suggest that pupil size may 116 
reflect changes in visual perception and cognitive processes. Similarly, Yokoi and Weiler (Yokoi & 117 

Weiler, 2022) examined changes in pupil size during motor adaptation. Participants performed 118 

reaching movements using a robotic manipulandum, where a lateral force was introduced as a 119 

perturbation through a force-field perturbation. These perturbations were applied either 120 

abruptly with multiple direction changes, or gradually. To assess the effects on pupil dilation of 121 

uncertainty and surprise, the authors focused on trials following the introduction of the 122 

perturbation, and after the perturbation was removed, but without validating the participants' 123 

subjective perception. The results indicated that phasic pupil response, that is, the baseline pupil 124 

diameter, was significantly increased at the onset of each experimental block, also associated 125 
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with prolonged reaction and movement times. A pronounced tonic pupillary response, that is, 126 

change in dilation during the movement, was observed both at the start of a new block and 127 

during the introduction of a perturbation. The authors concluded that not only physical exertion 128 

but also the perturbation itself triggers a pupillary response perhaps related to locus coeruleus 129 

activity in response to surprise (Dayan & Yu, 2006; Yokoi & Weiler, 2022). This supports the 130 

notion that larger pupil diameters and faster pupil reactions are associated with increased 131 

uncertainty and more difficult perceptual decisions and that pupil size correlates with subjective 132 

confidence and surprise about environmental changes.  133 

In summary, participants can detect perturbations during grasping tasks, and their pupils 134 

respond to perturbations. This raises the question of whether pupillary responses alone could be 135 

used to predict the participants' current perception – without requiring explicit feedback from 136 

the participants. The aim of this study was to tackle this question by combining (a) a grasping 137 

task with different perturbation schedules with (b) a psychophysics task where participants 138 

judged the relative sizes of visual and haptic (i.e., seen and felt) objects and (c) pupil dilation 139 

during the tasks, which was evaluated depending on stimulus and response characteristics and 140 

used to predict the response. 141 

Methods 142 

Participants 143 

A total of 59 participants took part in this study. Participants were required to be between 18 144 

and 60 years old, right-handed, and have unrestricted arm and hand functionality as well as 145 

normal or corrected-to-normal vision, provided any visual aids needed did not interfere with the 146 

participant’s comfort or the measurement process. Of the 59 participants, 11 were excluded 147 

from the experiment due to technical difficulties with achieving a successful eye-tracker 148 

calibration through the PLATO goggles and the cold mirror, resulting in 48 participants included 149 

in the final analysis, the intended sample size to enable counterbalancing of conditions and 150 

provide at least 90% power with an effect of Cohen’s d = 0.5 (Cohen, 1988). Of these participants, 151 

33 were women and 15 men, with ages ranging from 18 to 37 years. Participants were 152 

compensated either with course credit or 10€ per hour. 153 

Materials and stimuli 154 

Participants were presented with cuboids of varying sizes in a mirror setup (Mu ller et al., 2025), 155 

see Fig. 2. As was done in Mu ller et al. (2024), three cuboids were positioned on a rotating 156 

platform that could rotate one of them to face the participant on any given trial. The aluminum 157 

cuboids used in this experiment had a base of 15x15 and different lengths, with the smallest 158 

cuboid measuring 28 mm and the largest 60 mm. The three visually presented stimuli had 159 

lengths of 40 mm, 44 mm, or 48 mm. The size of the haptically presented stimuli varied based on 160 

the visually presented size and the visuo-haptic mismatch determined by the perturbation 161 

condition. This mismatch was introduced either abruptly or sinusoidally, with six different 162 

perturbation magnitudes: -12 mm, -6 mm, -3 mm, 3 mm, 6 mm, and 12 mm. Visual and haptic 163 

size was dissociated by projecting the “visual” cuboid towards the participant via a cold mirror 164 

slanted 45° away from them, while a “haptic” cuboid to be grasped was placed behind the mirror 165 

at the location where the participant saw the visual cuboid. 166 

Participants wore PLATO goggles (Milgram, 1987) to remove vision between trials, whose 167 

opaque lenses obstructed vision when closed but minimally altered ambient brightness (to 80-168 

90%), thereby only slightly affecting pupil dilation. Differing from Mu ller et al. (2024), responses 169 

were given using a four-button response box ("Black Box"; The Black Box ToolKit Ltd., Sheffield, 170 

UK; Fig, 2, inset). Behind the mirror was an EyeLink-1000 eye tracker (SR Research, Ottawa, 171 
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Canada) tracking participants’ eye movements and pupil dilation through the cold (infrared-172 

transparent) mirror, and an Optotrak 3D Investigator (Northern Digital, Waterloo, CA) that 173 

captured hand movements at a frequency of 500 Hz. Infrared diodes were placed on the 174 

participants' thumb, index finger, and wrist. To determine the exact moment of contact with the 175 

object, reflective aluminum was affixed to the long sides of the haptic object, and a diode was 176 

positioned nearby to allow the diode's signal to be reflected. Once the haptic cuboid was lifted, 177 

the signal was no longer reflected. 178 

 179 

 180 

Figure 2: The experimental setup. Participants sat in front of a cold mirror, slanted away from 181 
them at 45°, with their head in a chin rest and their left hand on a response box. Visual objects 182 
were presented on a rotating platform in front of the mirror, haptic objects were placed behind 183 
the mirror in the same position where participants saw the visual objects. PLATO goggles were 184 
used to prevent vision of the platform rotating, an EyeLink-1000 tracked gaze position and 185 
pupil diameter through the cold mirror. Inset, top left: The responses assigned to the four 186 
buttons of the response box. 187 

Experimental design 188 

For each trial, participants were instructed to grasp the haptic cuboid, lift it briefly, place it back 189 

down, and then judge whether the haptic cuboid was larger or smaller than the visual cuboid. 190 

Four response options were provided: "definitely larger," "probably larger," "probably smaller," 191 

and "definitely smaller", allowing more nuanced insights compared to a simple "larger or 192 

smaller" decision (Mu ller et al., 2025) and including subjective confidence as a factor in pupil-193 

dilation analyses – that is, we considered “definitely larger” and “definitely smaller” as responses 194 

with high subjective confidence, and “probably larger” and “probably smaller” as low-subjective 195 

confidence responses. This is in line with previous work showing uncertainty about the 196 

perturbation on the next action being a predictor of pupillary responses (Yokoi & Weiler, 2022). 197 

We deliberately included confidence in one single judgement on each trial despite concerns that 198 

this can introduce biases  (Fleming & Lau, 2014; Mamassian, 2016), since this type of response 199 

ameliorated a key issue in Mu ller et al. (2024), participants repeatedly having to give the same 200 

response to repeated identical perturbations. 201 

Prior to the main experiment, a training block consisting of 12 trials was conducted to 202 

familiarize participants with the task. This training block contained both unperturbed trials and 203 

trials with the largest positive and negative size mismatch. During training, participants were 204 
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informed when they had grasped a perturbed object, helping them develop an understanding of 205 

the potential size differences. In the main experiment, the abrupt-perturbation condition was 206 

presented a total of 6 times (±3 mm, ±6 mm, ±12 mm), and the sinusoidal-perturbation 207 

condition was presented 3 times (3 mm, 6 mm, 12 mm). To control for sequential effects across 208 

blocks, a 6x6 row-balanced Latin Square was used to determine the order of the abrupt blocks, 209 

while the sinusoidal blocks were inserted at randomly selected positions. The order of these 210 

blocks also varied across participants. Consequently, each participant completed 9 blocks, each 211 

lasting approximately 11 minutes (abrupt blocks ~10 minutes, sinusoidal blocks ~12 minutes). 212 

After each block, participants were allowed to take a break for as long as needed. 213 

Each block in the abrupt-perturbation condition consisted of 24 trials. The first four trials 214 

presented blocks identical to the visually displayed ones to establish a baseline for the maximum 215 

grip aperture (MGA). In the subsequent 16 trials, the length of the haptic cuboid was either 216 

larger or smaller than that of the visual cuboid by a fixed amount, depending on the perturbation 217 

magnitude assigned to the block. The rotating platform displayed a different cuboid in each trial, 218 

with the size mismatch being constant across each one block of the abrupt-perturbation 219 

condition. For instance, if the visual cuboid in a perturbed trial had a size of 44 mm and the 220 

perturbation magnitude was 6 mm, the haptic cuboid had a size of 50 mm. The final four trials 221 

were washout trials in which the perturbation was removed, and the visual and haptic cuboid 222 

were of equal size again. This allowed for the assessment of the aftereffects of the perturbation 223 

on the MGA and the psychophysical judgments. 224 

Each block in the sinusoidal-perturbation condition consisted of 36 trials. The length of the 225 

haptic cuboid was altered according to a sinusoidal function (as proposed by Hudson & Landy, 226 

2012) with each sinus-cycle consisting of 12 trials, thus creating size differences between the 227 

visual and haptic objects without abrupt changes. As a previous study (Mu ller et al., 2025) found 228 

no significant difference in response patterns between positive and negative perturbation 229 

magnitudes, these were combined in the current study, and each participant completed three 230 

sinusoidal-perturbation blocks with maximal amplitudes of 3 mm, 6 mm, and 12 mm, 231 
respectively. A randomized phase shift was introduced, starting the sinusoidal cycle in either the 232 

positive or negative direction. Across all participants, an equal number of positive and negative 233 

perturbation amplitudes were presented, and each participant completed at least one of each. 234 

Data processing and analysis 235 

Grasping: Maximum grip aperture and adaptation 236 

To filter the motion-tracking data, we applied a cubic-spline interpolation and a third-order 237 

Savitzky-Golay filter (Savitzky & Golay, 1964) using a 55-ms window. For each trial, the onset of 238 

the grasping movement was defined as both the index finger’s and thumb’s marker moving at 239 
more than 25 cm/s, while the end was defined as the moment when the diode that was reflected 240 

by the target object was no longer visible to the motion-capture system or moved at more than 241 

25 cm/s. Trials were excluded from analysis if the grip-aperture trajectory was missing more 242 

than 20% of frames, or as outliers if the MGA was more than three inter-quartile ranges removed 243 

from a participant’s median for the respective visual object size (3.8% of trials combined). 244 

To measure grip adjustment to the different cuboid sizes, the distance between the thumb and 245 

index finger was recorded and their maximal distance during the grasping movement was 246 

computed as the MGA. The MGA is known to increase with object size (Bhatia et al., 2022; 247 

Jeannerod, 1984; Smeets & Brenner, 1999) and reflects sensorimotor adaptation when 248 

participants adjust their grip to visual or haptic perturbations (Cesanek & Domini, 2017; 249 

Gentilucci et al., 1995; Kopiske et al., 2017; Sa fstro m & Edin, 2005). We modelled adaptation of 250 

the MGA in response to the error signal (the size difference between the visual and haptic 251 
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cuboids) using a linear state-space model (Cheng & Sabes, 2006; Wolpert et al., 1995) in which a 252 

state, corresponding roughly to a visuomotor mapping of visual input to a motor action, changes 253 

linearly from the previous state based on the error signal from the previous trial, thereby 254 

facilitating a correction or adaptation in the grip movement: 255 

𝑥𝑡+1 = 𝐴𝑥𝑡 − 𝑏𝐸𝑡  (1) 256 

Here 𝑥𝑡 represents the current state and is modified trial-by-trial based on the error 𝐸𝑡, which 257 

we defined as the haptic error signal – that is, difference between the observed MGA and the 258 

MGA predicted from the linear response function of MGA ~ haptic size and the haptic object size 259 

on each trial. The retention parameter A indicates the extent to which the previous state 260 

influences the current state. For fitting, the nloptr package (Ypma, 2014) was used. Parameters A 261 

and b were each bounded between [0, 1]. 262 

To assess the adaptation process, the correction parameter b was our main parameter of 263 

interest. To assess whether adaptation differed between conditions, we conducted a repeated-264 

measures ANOVA (rmANOVA) with factors perturbation schedule (abrupt or sinusoidal) and 265 

perturbation magnitude (3 mm, 6 mm, 12 mm). 266 

Psychophysics: Size discrimination 267 

We analyzed perturbation-detection, measured indirectly through size discrimination, in three 268 

ways: One, overall performance was assessed by creating receiver-operator-characteristics 269 

(ROC) curves (Green & Swets, 1966) for each participant and each perturbation schedule, with 270 

each of the four response levels to the question “was the felt object larger or smaller than the 271 

seen one?” essentially being treated as different decision criteria (Naber et al., 2013). That is, 272 

each curve consisted of four points with y1 equaling the proportion of “definitely larger” 273 

responses when the haptic object was indeed larger, y2 being the combined proportion of 274 

“definitely larger” and “probably larger” responses, etc., and the x-coordinates being the 275 

corresponding values for smaller haptic objects and responses starting with “definitely smaller”. 276 

In sinusoidal blocks, only trials with maximum amplitude were used in this analysis, to enable a 277 

fair comparison to abrupt blocks. Two, we collapsed “definitely” and “probably” correct 278 
responses and “definitely” and “probably” incorrect responses, respectively, to get a binary 279 

correct/incorrect scoring that could be used to (i) replicate the finding from previous work 280 

(Mu ller et al., 2025) and (ii) compute linear slopes for the percentage of correct responses over 281 

trials in each block, which served as a means to estimate if participants got better or worse as 282 

perturbations were presented repeatedly. These slopes were then submitted to rmANOVAs with 283 

factors perturbation schedule (abrupt or sinusoidal) and perturbation magnitude (3mm, 6mm, 284 

12 mm). Three, we conducted these same rmANOVAs for the slopes of response confidence after 285 

dividing responses in confident vs. unconfident. 286 

Pupillometry: Preprocessing, parameters, prediction  287 

Throughout the experiment, eye movements and pupillary responses were recorded at a 288 

frequency of 1000 Hz. Pupil-dilation trajectories from 1000 ms before and 2500 ms after contact 289 

with the haptic cuboid were used. Blinks were automatically identified by EyeLink DataView (SR 290 

Research, Ottawa, Canada), and all data 50 ms around blinks was removed. Plots and basic 291 
analyses were conducted with unfiltered data. To train classifiers, missing data was linearly 292 

interpolated and data filtered with a 35-ms Savitzky-Golay filter (Savitzky & Golay, 1964). An 293 

average of approximately 42% of data points were missing, including blinks. Visual inspection 294 

(Fig. 7) shows that missing data were spread relatively evenly across trajectories and did not 295 

cluster around systematically relative to touch, although perhaps somewhat after the response 296 

was given (Fig. 7, top row), with mean peaks of 48.6%. Trials were excluded from analysis if less 297 
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than 500 ms of the trajectory could be evaluated (4.9% of trials). One experimental block in one 298 

participant additionally had to be excluded due to technical issues during recording. 299 

From each trial’s pupil-dilation trajectory, we computed a set of three parameters: (i) The 300 

baseline (computed as the mean dilation during a 1,000 ms window after opening of the 301 

goggles) was computed as a measure of tonic pupil response. (ii) We estimated the dilation’s 302 

maximum and minimum velocity (i.e., the maximum speed of the pupil opening and contracting) 303 

post-touch and took the difference between the two as a measure of phasic response. (iii) Finally 304 

as another measure of phasic response that was also used by (Yokoi & Weiler, 2022), we 305 

calculated the amplitude (i.e., peak-trough difference) of the aperture post-touch. 306 

To analyze which variables (trial parameters as well as properties of the grasp and the 307 

psychophysical response) influenced the pupillary response, linear mixed-effects models (LMEs) 308 

were applied (Bates et al., 2015). We iteratively fit models with an increasing numbers of 309 

predictors, discarding factors that did not improve the Akaike Information Criterion, AIC (Akaike, 310 

1974; Burnham & Anderson, 2004) relative to the current best model. In order, we performed 311 

this procedure with the factors (each fit as a fixed effect with a slope) perturbation magnitude, 312 

perturbation type, trial number, block, response accuracy, and confidence in correct responses, 313 

and for each of the pupil parameters baseline pupil size, post-touch pupil amplitude, and post-314 

touch pupil velocity difference. A random effect with a random intercept for each participant was 315 

also included in every model. For each pupil parameter, the model with the lowest AIC value was 316 

ultimately selected as the one that best explained the pupillary response as a physiological 317 

measure of perception influenced by the perturbation. 318 

We used a Support Vector Machine (SVM) to determine whether participants’ responses could be 319 

inferred from their pupillary responses and other trial information (Boser et al., 1992). While 320 

ideally, one would predict both the correctness and confidence of the response, here we focused 321 

on the responses’ confidence, given that this was a parameter that participants had direct access 322 

to. Further, it has been argued that pupil responses (also in perception-action tasks) are 323 

particularly sensitive to surprise (Yokoi & Weiler, 2022), which also might be reflected in the 324 

difference between confident and unconfident correct responses. Thus, the following analysis 325 

examined the extent to which confidence could be predicted, in correct responses, based on 326 

different groups of predictor variables. 327 

We used five sets of features to compute subject-wise SVM classifiers: (i) trial information (block 328 

number, trial number, perturbation type, perturbation magnitude), (ii) classic “pupil parameters” 329 

as defined above (baseline, velocity difference, amplitude), (iii) pupil-response trajectories 330 

spanning from 500 ms before to 2500 ms after contact with the haptic cube, downsampled to 50 331 

Hz (to make computation feasible), (iv) the first temporal derivative of those trajectories, also 332 

downsampled to 50 Hz, and (v), the grasping error, defined as the difference between the 333 

observed MGA and the MGA expected given the response function and the haptic object size. For 334 

each participant, we used seven randomly selected experimental blocks as the training set to 335 

train a c-classification SVM with radial-basis kernel using the R-package e1071 (Meyer et al., 336 

2024), and the remaining two blocks as the test set. Each combination of the four feature classes 337 
was used, with the class-balanced accuracy in the test set being our primary outcome. Since 338 

classification performance would likely depend to some extent on both the sampling rate of the 339 

data and meta parameters of the SVM model (Kuhn & Johnson, 2013), we varied the sampling 340 

rate (ranging from 5 Hz to 50 Hz), as well as the cost-parameter of constraints violations (i.e., the 341 

factor by which residuals are multiplied, ranging from C = 10-5 to C = 105) and the class weights 342 

for responses (using both equal weights and weights inverse to the response distribution). We 343 

report results from our “standard” combination of parameters with 50Hz, a cost parameter of C 344 

= 1, and equal weights for each class of responses in the main text, and the range of model 345 
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performance based on varying these parameters in the appendix. Data and analyses are available 346 

at https://osf.io/vh36g/?view_only=9e72dec48ed04b57a1c24fe5df82df6d  347 

Results 348 

Maximum grip aperture and sensorimotor adaptation 349 

 350 

Figure 3: Maximum grip apertures (MGAs) in different conditions. Top: Mean MGAs, split up 351 
by perturbation type (abrupt on the left, sinusoidal on the right) and perturbation magnitude (by 352 
color), baseline-corrected relative to non-perturbed trials. Bottom: MGAs, perturbations and 353 
the corresponding models from sample blocks. Models computed following equation 1. We 354 
show data from individual blocks rather than aggregates since the use of the trial-wise MGA, 355 
along with a block-wise correction parameter, makes an average model fitted to average data 356 
hard to interpret. Left: Data from block with an abrupt perturbation. Right: Data from a 357 
sinusoidal-perturbation block. For the top row, absolute values relative to baseline were 358 
computed to enable collapsing of blocks using sinus function with different signs. 359 

Participants scaled their grip to the size of the visual object, mean slope = 0.44 ± a standard error 360 

of 0.05. Mean parameters from our error-correction model (eq. 1) were b = .35 ± .01 and A = .80 361 

± .01. The mean correction parameters by perturbation type were babrupt = 0.42 ± .01 for the 362 

abrupt condition and bsinusoidal = 0.21 ± .01  for the sinusoidal condition. This difference was 363 

significant in the rmANOVA (F(1, 47) = 95.40, p < .001), indicating that adaptation to the 364 

perturbation was significantly more effective in the abrupt condition than in the sinusoidal 365 

condition. There was also a main effect for perturbation magnitudes (F(2, 94) = 4.22, p = .02), 366 

https://osf.io/vh36g/?view_only=9e72dec48ed04b57a1c24fe5df82df6d
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but no interaction (F(2, 94) = 3.14, p = .097). Grasping data aggregated by perturbation type and 367 

magnitude, as well as from two blocks of a sample participant to illustrate the models, can be 368 

seen in Fig. 3. 369 

 370 

Discrimination performance  371 

Participants were slightly more likely to judge the haptic object as larger than the visual one 372 

(56.8%), and also more likely to respond that the object was definitely larger or smaller (64.6%) 373 

than it being only probably so. Both confidence and size judgements were more sensitive to 374 

differences in perturbation magnitude in sinusoidal-perturbation blocks compared to abrupt-375 

perturbation blocks, see Fig. 4. 376 

 377 

Figure 4: Proportion of responses along the two response dimensions, by perturbation type 378 
and magnitude. Left: Proportion of responses saying that the haptic object was larger than the 379 
visual one. Right: Proportion of responses with high confidence. Black squares indicate abrupt-380 
perturbation blocks, gray circles show values from sinusoidal-perturbation blocks (data from 381 
maximal-perturbation trials only). We show arithmetic means across participants, with 382 
between-participant standard errors as error bars. 383 

We calculated linear slopes for each experimental block for the responses’ correctness (with 384 

respect to the direction of the perturbation and binarized, so the combined proportion of dark 385 

and light blue, Fig. 5), so correctness ~ trial number. These were submitted to a 2x3 rmANOVA, 386 

revealing a significant effect for the perturbation condition (sinusoidal/abrupt) on response 387 

accuracy: F(1, 47) = 48.86, p < .001 for the average slope across trials (decreasing by -0.95% per 388 

trial for abrupt conditions, and decreasing by -0.02% per trial for sinusoidal conditions), 389 

consistent with the fact that visually, the proportion of correct trials in Fig. 5 decreased over 390 

trials for abrupt, but not sinusoidal perturbations, as one would expect if sensorimotor 391 

adaptation makes detection harder. However, no significant main effect was found for 392 

perturbation size (F(2, 94) = 2.72, p = .071), nor an interaction effect (F(2, 94) = 1.88, p = .158). 393 
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For linear slopes of response confidence (combined proportion of dark red and dark blue, Fig. 5), 394 

the 2x3 rmANOVA showed a significant effect of the perturbation condition (sinusoidal/abrupt): 395 

F(1, 47) = 53.07, p < .001 for the average slope across trials (decreasing by -1.21% per trial for 396 

abrupt conditions, and decreasing by -0.05% per trial for sinusoidal conditions). Additionally, 397 

significant effects were observed of perturbation size (F(2, 94) = 7.98, p = .001), and an 398 

interaction effect (F(2, 94) = 6.90, p = .002). The significant interaction suggests that the effect of 399 

perturbation size on the slope of response confidence depends on whether the perturbation is 400 

abrupt or sinusoidal. Similar to the effects seen in the correctness of responses, the proportion of 401 

high-confidence responses (and especially high-confidence correct responses) decreased 402 

substantially during abrupt, but not sinusoidal-perturbation blocks (Fig. 5).  403 

 404 

Figure 5: Participants’ responses across trials. The y-axis shows the proportions of each 405 
response, cumulatively, such that the height of the dark-blue bar is the proportion of responses 406 
that were correct and high-confidence, the height of the light-blue bar on top of this is the 407 
proportion of low-confidence responses that were correct, and light red and dark red show the 408 
proportions of low-confidence and high-confidence responses that were incorrect. The x-axis 409 
displays trials (left) or sinus half-cycles (right). Left: Data from blocks with abruptly-introduced 410 
perturbations, with mean proportions plotted by trial, starting with the first perturbed trial. Right: 411 
Data from sinusoidal blocks, plotted by sinus-half-cycle, which would contain each perturbation 412 
magnitude in the block precisely once and is thus free of the confounding factor of perturbation 413 
magnitude. 414 

To investigate and compare overall (aggregated) discrimination performance, we constructed 415 

ROC curves for each participant and each perturbation type (Fig. 6) and analyzed the area under 416 

the curve (AUC). On average, participants did quite well in the task, with mean AUCs of .88 for 417 

abrupt blocks and .93 for sinusoidal blocks. This difference was statistically significant, t(47) = 418 

4.8, p < .001. We also computed just-noticeable differences from binary-coded responses, finding 419 

JND values of 5.43 ± 0.23 mm for the abrupt condition and 3.97 ± 0.17 mm for the sinusoidal 420 

condition. 421 
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 422 

Figure 6: ROC curves for the two types of blocks. Left: Data from abrupt-perturbation blocks, 423 
right: Data from sinusoidal-perturbation blocks, maximum-amplitude trials only. Each colored 424 
line indicates a single participant, thick black lines indicate ROC curves computed from grand 425 
means across participants. 426 

Pupillary responses 427 

Average pupil dilation depending on trial and response characteristics are shown in Fig. 7. From 428 

these, pupil parameters baseline, velocity difference, and amplitude were computed for each 429 

trial. 430 

 431 

 432 

 433 

Figure 7: Pupil-dilation trajectories split up by perturbation type and by response. Plotted are 434 
grand means across participants. Top row: Trajectories relative to the participant’s response. 435 
Bottom row: Trajectories relative to the participant touching the haptic object. Shaded areas 436 
indicate ± one between-participant SEM. Insets show proportion of frames with missing data. 437 

Using LMEs, we investigated if these parameters varied systematically depending on (i) 438 

perturbation magnitude, (ii) perturbation type, (iii) trial, (iv) block, (v) response correctness, 439 

(vi) response confidence, and (vii) the grasping error E. Each of these fixed effects were fit as 440 

slopes in the LMEs. Iteratively adding predictors and comparing them by AIC to the previously 441 

best-fitting model revealed the best model to be the full model for pupil-dilation baseline and for 442 

the dilation’s amplitude, though we note that some predictors did not affect both variables in the 443 

same direction, i.e., one positively and one negatively. For its velocity difference, neither trial 444 

number nor response confidence improved the model fit (Table 1).  Thus, pupil parameters 445 
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responded to stimulus differences and differed by response and grasping parameters, although 446 

with slight differences between tonic and phasic parameters. 447 

Table 1: Eye parameters predicted by trial-information variables. 448 

DV Pert. 

magnitude 

Pert. 

type 

Trial # Block # Resp. 

correct 

Resp. 

confid. 

E 

        

Baseline 

ΔAIC: 

FE: -4.2 FE: 34.3 

-18.0 

FE: -7.0 

-416.4 

FE:  -16.1 

-143.4 

FE:  24.7 

-6.4 

FE:  4.9 

-4.4 

FE:  -0.7 

-35859.7 

Amplitude 

ΔAIC: 

FE: 4.8 FE: -22.8 

-124.9 

FE: 1.2 

-0.9 

FE: 6.4 

-28.5 

FE:  89.7 

-351.2 

FE:  -2.8 

-15.8 

FE:  0.2 

-34304.2 

Velocity 

difference 

ΔAIC: 

FE: 0 FE: -0.1 

-35.9 

FE: - 

9.6 

FE:  0.1 

-57.2 

FE:  0.4 

-60.6 

FE:  - 

5.2 

FE:  -0.01 

-12384.1 

Note: All ΔAIC are given for inclusion of the respective predictor, relative to the previously best-449 
fitting model. Predictors were added iteratively, in order from left to right and discarded (i.e., 450 
not included in more complex models) if the AIC was not improved by including them (cells 451 
with red background color). Fixed effects (abbreviated as FE) from the final best-fitting model 452 
are provided. 453 

Classification of response confidence with SVM 454 

Classification performance using our standard set of meta-parameters (50 Hz, C = 1, equal class 455 

weights) is summarized in Table 2. As we can see, while class-based accuracy in the training set 456 

was quite good for many different sets of features and especially for those involving the 457 

derivative of pupil dilation, only classifiers using trial-information features could predict 458 

responses in the test set. Indeed, adding other features like pupil dilation, its derivative, or 459 

grasping error to a model containing trial information reliably increased the accuracy in the 460 

training set, but decreased accuracy in the test set. 461 

The obvious possible explanation here is overfitting: With 50 Hz, we had several times as many 462 

features if we used the dilation trajectories than we had trials in the training set. Thus, 463 

conducted the same analysis with lower sampling rates of 10 Hz and 5 Hz, see Table A.1 and 464 

Table A.2. The main difference here was that while the overall pattern stayed the same – only 465 

trial-information features having any predictive power in the test set – the accuracy in the test 466 

set tended to decrease less than with the higher sampling rate. Thus, it is likely that (i) 467 

overfitting was indeed a problem, and (ii) the information contained in most features was not 468 

sufficient for classification. A multiverse analysis varying not only framerate but also the class 469 

weights and cost factor (Table A.3) showed the same pattern, with only models including trial 470 

information performing consistently above chance in the test set, and none outperforming the 471 

simple trial-information-only model. 472 
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Table 2: SVM results with pupil dilation and its derivative sampled at 50 Hz. 473 

Model Acc. Train Acc. Test nSamples Train nSamples Test 

Trial 

information  

90.5% 74.5% 105.1 32.1 

Eye parameters 67.5% 47.4% 94.5 32.1 

Dilation 

trajectory  

72.4% 48.7% 100.1 27.7 

Dilation 

derivative 

96.2% 47.4% 99.1 28.8 

Dilation 

trajectory + 

derivative 

90.5% 49.0% 95.6 27.8 

Dilation 

trajectory + 

derivative + 

info 

94.8% 50.0% 100.3 25.7 

Grasping error 63.2% 50.4% 99.2 31.0 

Grasping error 

+ trial info 

91.6% 71.9% 99.2 29.3 

Note: We report arithmetic means across participants. “Accuracy” refers to class-balanced 474 
accuracy. The number of samples differed as trials with missing values in the features were 475 
excluded.  476 

Discussion 477 

We found that as participants adapted to a sensorimotor size perturbation in grasping, their 478 

discrimination performance regarding the same perturbation magnitude decreased, as did the 479 

confidence in their own responses. We replicated and extended previous work (Mu ller et al., 480 

2025), who also found reduced discrimination with abrupt perturbations, and generalized the 481 

results to a four-response setting (thereby circumventing methodological problems of 482 

participants repeatedly having to give the same response). We also probed whether pupil 483 

responses could be used to predict the confidence of participants’ responses, as a first step 484 

towards using pupillometry as a no-report marker of perturbation detection. While we did find 485 

that pupil parameters responded to not only differences between experimental trials (Yokoi & 486 

Weiler, 2022), but also differed depending on participants’ psychophysical and grasping 487 
responses, using pupil information as features in an SVM classifier did not allow us to accurately 488 

predict psychophysical responses. 489 

Having previously found that perturbation schedules that are easy to adapt to correlate with 490 

decreasing perturbation detection (Mu ller et al., 2025) in a 2AFC task, part of our study was 491 

aimed at improving the prior study methodologically. A major concern about presenting an 492 

abruptly introduced step-function perturbation is that it requires participants to give the same 493 

answer many times in a row, potentially introducing response biases that cannot be dissociated 494 

from the putative effects of sensorimotor adaptation on detection. This was ameliorated by our 495 

use of a four-response task, as participants had multiple correct options on any given 496 

perturbation trial. Not only did we replicate the performance decrease with respect to 497 
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correctness, but we also found the same pattern in response confidence, again in line with the 498 

idea that it is sensorimotor adaptation itself that, by decreasing the grasping error, makes it 499 

harder to detect the perturbation participants adapted to and participants more uncertain about 500 

their responses.  501 

Our experiments focused on responses – motor, psychophysical, and physiological – to motor 502 

perturbations, that is, externally induced errors. This is distinct from responses to self-generated 503 

errors, which may be the more common type of error in everyday life. Here, recent work on 504 

metacognition has shown that participants are also able to judge errors that are not induced by 505 

the experimenter (Arbuzova et al., 2021) at an above-chance rate. Interestingly, such 506 

metacognition appears to be preserved in confidence ratings even when detection responses are 507 

incorrect (Pereira et al., 2023). While we found no difference in patterns between the 508 

correctness and confidence of responses (both affected similarly on average by the perturbations 509 

and decreasing over time for abrupt but not sinusoidal perturbation schedules), experiments 510 

targeted at investigating metacognition over time may be an interesting avenue to find out more 511 

about what is used to make metacognitive judgements. More generally, the question is to what 512 

extent the results here generalize to other settings, which includes other motor actions such as 513 

reaching (Gaffin-Cahn et al., 2019) or walking (Iturralde et al., 2020; Mu ller & Kopiske, 2025), as 514 

well as psychophysical tasks more specifically designed to assess participants’ confidence 515 

(Fleming & Lau, 2014; Mamassian, 2016). 516 

Finally, we show that pupil dilation reflects not just the characteristics of experimental trials 517 

(Yokoi & Weiler, 2022), but also characteristics of participants’ responses. LME analyses 518 

confirmed that both the tonic response, quantified here by baseline dilation before the start of 519 

each trial, and the phasic response, quantified as dilation change after touching the haptic object, 520 

depended on trial characteristics such as the perturbation as well as trial and block number, and 521 

on response characteristics such as the correctness and confidence of responses in the detection 522 

task and the grasping error. In line with previous results (Yokoi & Weiler, 2022), this is consistent 523 

with involvement of noradrenaline and the locus coeruleus (Dayan & Yu, 2006) as the actor acts 524 
and decides under uncertainty. Such effects are a necessary condition for the overarching long-525 

term goal: Predicting psychophysical responses from pupil data. In simple terms, for this to be 526 

possible, pupil dilation and psychophysics need to be related at all, which is what the LMEs 527 

demonstrate. To go one step further, we also trained SVM classifiers using different sets of 528 

features – trial information, aggregated pupil-dilation parameters, pupil-dilation trajectories, 529 

and grasping errors – to predict response confidence. This is in line with previous work arguing 530 

that pupil responses can reflect uncertainty and conflicting information (Ebitz & Platt, 2015; 531 

Joshi & Gold, 2020), which is why we attempted to predict response confidence rather than 532 

correctness (which participants also did not have access to when they gave their responses). 533 

This was only partially successful: While many models showed great accuracy (>85%) in the 534 

training set, only trial-information features had any predictive power in the test set, and indeed, 535 

models containing these features only performed substantially better on the test set than those 536 

additionally containing other features. In particular, the derivative of pupil-dilation trajectories 537 

performed exceptionally well in the training set, but at chance level in the training set, even 538 

combined with trial-information features. Using fewer features by downsampling pupil 539 

trajectories to combat overfitting ameliorated the latter problem, but still the pupil data showed 540 

no benefit over just using trial information. Here, we note three things: One, it is possible that 541 

improved data quality could improve classification, although the mean proportion of missing 542 

data was only moderately worse in trials that were incorrectly classified (44.6%) compared to 543 

those that were correctly classified (41.2%) using pupil-dilation features. Two, while we chose to 544 

temporally lock trajectories to the participant touching the object, the time courses plotted in 545 

Fig. 7 suggest that locking them to the participant response might be just as promising – 546 

however, investigating the time course in detail warrants its own study and is beyond the scope 547 



Pfalz et al.  Perturbation detection and pupillometry 

of this manuscript. Three, we deliberately used SVM as a standard, well-tested classifier. Our 548 

study focused on whether there was something in the data, not how well cutting-edge machine-549 

learning classifiers can perform. In future research, it may be useful to take a step back and 550 

verify if, in a simple adaptation paradigm without psychophysical response, trial characteristics 551 

can be predicted from pupil data. 552 

Conclusion 553 

As humans adapt to motor perturbations, the motor error decreases. This, in turn, makes it 554 

harder for them to detect those same perturbations, and makes them less confident in being able 555 

to do so. Pupil-dilation parameters responded to trial- and response-characteristics, but did not 556 

allow accurate classification of participant responses. 557 
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Appendix 565 

Table A.1: SVM results with pupil dilation and its derivative sampled at 10 Hz. 566 

Model Acc. Train Acc. Test nSamples Train nSamples Test 

Trial 

information  

90.0% 78.8% 105.0 33.8 

Eye parameters 67.5% 45.4% 96.4 28.2 

Dilation 

trajectory  

72.6% 50.1% 96.8 29.7 

Dilation 

derivative 

92.9% 48.4% 98.3 30.1 

Dilation 

trajectory + 

derivative 

88.7% 45.5% 101.3 28.0 

Dilation 

trajectory + 

derivative + 

info 

96.0% 62.6% 96.3 28.6 

Grasping error 65.6% 46.9% 96.6 30.2 

Grasping error 

+ trial info 

91.0% 73.9% 102.7 28.3 

Note: Variables used as in Table 2. 567 

  568 
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 569 

Table A.2: SVM at 5 Hz 570 

Model Acc. Train Acc. Test nSamples Train nSamples Test 

Trial 

information  

91.4% 74.4% 105.4 29.5 

Eye parameters 67.9% 41.0% 99.2 28.2 

Dilation 

trajectory  

72.1% 45.6% 100.1 27.1 

Dilation 

derivative 

89.4% 49.6% 97.0 27.0 

Dilation 

trajectory + 

derivative 

87.6% 48.5% 97.6 28.3 

Dilation 

trajectory + 

derivative + 

info 

96.1% 69.6% 98.6 27.6 

Grasping error 65.6% 54.4% 99.0 29.8 

Grasping error 

+ trial info 

91.8% 73.3% 102.4 28.1 

Note: Variables used as in Table 2. 571 

  572 
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 573 

Table A.3: Multiverse SVM results. 574 

Model Accuracy Training Accuracy Test 

Trial information  75.3% - 98.5% 55.8% - 100% 

Eye parameters 59.8% - 82.1% 24.7% - 52.8% 

Dilation trajectory  59.2% - 100% 39.0% - 75.9% 

Dilation derivative 75.1% - 99.8% 37.5% - 63.0% 

Dilation trajectory + 

derivative 

72.2% - 100% 39.6% - 64.1% 

Dilation trajectory + 

derivative + info 

73.3% - 100% 34.9% - 69.6% 

Grasping error 56.9% - 72.6% 46.6% - 67.3% 

Grasping error + trial 

info 

73.2% - 100% 48.8% - 100% 

Note: Variables used as in Table 2. We report ranges of means across parameter 575 
combinations. Frame rate (50 Hz, 10 Hz, 5 Hz), class weights (equal, inverse), and cost factor 576 
(C = 10-5, C = 10-1, C = 1, C = 10, C = 105) were varied independently.  577 

  578 
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