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Abstract 1 

Humans achieve skilled actions by continuously correcting for motor errors or perceptual 2 

misjudgments, a process called sensorimotor adaptation. This can occur both with the actor 3 

detecting (explicitly) and not detecting the error (implicitly). We investigated how the 4 

magnitude of a perturbation and the corresponding error signal each contribute to the 5 

detection of a size perturbation during interaction with real-world objects. Participants 6 

grasped cuboids of different lengths in a mirror-setup allowing us to present different sizes 7 

for seen and felt cuboids, respectively. Visuo-haptic size mismatches (perturbations) were 8 

introduced either abruptly or followed a sinusoidal schedule. These schedules dissociated 9 

the error signal from the visuo-haptic mismatch: Participants could fully adapt their grip and 10 

reduce the error when a perturbation was introduced abruptly and then stayed the same, 11 

but not with a constantly changing sinusoidal perturbation. We compared participants’ 12 

performance in a 2AFC task where participants judged these mismatches, and modelled 13 

error-correction in grasping movements by looking at changes in maximum grip apertures, 14 

measured using motion tracking. We found similar mismatch detection performance with 15 

sinusoidal perturbation schedules and the first trial after an abrupt change, but decreasing 16 

performance over further trials for the latter. This is consistent with the idea that reduced 17 

error signals following adaptation make it harder to detect perturbations. Error-correction 18 

parameters indicated stronger error-correction in abruptly introduced perturbations. 19 

However, we saw no correlation between error-correction and overall mismatch detection 20 

performance. This emphasizes the distinct contributions of the perturbation magnitude and 21 

the error signal in helping participants detect sensory perturbations. 22 

Keywords: Visual perception, haptic perception, perception and action,  23 

       sensorimotor adaptation, just noticeable difference (JND)  24 
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Introduction 25 

Sensorimotor adaptation and sensory error 26 

Interacting with our environment is a complex process that involves continuous recalibration 27 

of our actions (Helmholtz, 1867; Woodworth, 1899). We observe an object, we reach out to 28 

manipulate it, slowly and a bit clumsily at first – but over several manipulations, we become 29 

more proficient. This process of learning to perform actions and reducing associated motor 30 

error is referred to as sensorimotor learning (Krakauer & Mazzoni, 2011). Systematic errors 31 

are often of particular interest: Not only can effects of learning on them be very large 32 

compared to that on random errors (Bingham & Mon-Williams, 2013; Burge et al., 2008), 33 

they can also be experimentally manipulated, and in different sensory modalities, allowing 34 

us to disentangle the contributions of the respective sensory channels to specific actions 35 

(Ernst & Banks, 2002). Indeed, inducing errors (that is, perturbing actions), for example 36 

through mismatches between sensory channels, is a common method to investigate how 37 

humans deal with motor errors more generally. 38 

Typically, we consider sensorimotor adaptation to be mainly a consequence of 39 

correcting motor errors (Shadmehr et al., 2010). For example, after reaching towards a 40 

target and erring to the left, one would respond by moving the arm further to the right the 41 

next time (Van Dam & Ernst, 2013); after failing to grasp an unexpectedly large object, one 42 

would open the hand more on the next grasp (Säfström & Edin, 2004). Thus, the action 43 

would be corrected based on information from the previous grasp to ensure that another 44 

such grasp would be successful. 45 

Detecting sensory errors 46 

During adaptation, humans often notice that some adjustment is needed. Experimentally, 47 

the awareness of perturbations may be manipulated by (i) using an explicit instruction 48 

(Miyamoto et al., 2020; Taylor & Ivry, 2011), (ii) distracting participants (Mariscal et al., 49 

2020), or (iii) changing some inherent properties of the perturbation – for example making it 50 

very large or introducing it gradually rather than abruptly to mask the mismatch (Kagerer et 51 

al., 1997; Orban De Xivry et al., 2013). The third may be the most ecologically valid, but also 52 

the most difficult, as it relies on various sources of information whose influence is only 53 

known indirectly. 54 
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Take a large size mismatch in grasping, a participant picking up an object that visually 55 

appears smaller than it really is. The participant may detect that their fingers do not touch 56 

the object at quite the same time nor with the speed and force that they normally would. 57 

Next, they may detect that the felt (haptic) size of the object is different from the seen 58 

(visual) size, and its unexpected weight. Thus, there are many different sensory inputs, each 59 

with its own just-noticeable difference (JND; Fechner, 1860), and often not linearly 60 

dependent on the mismatch (Jeannerod, 1986). Thus arises our main question: What makes 61 

a perturbation detectable? 62 

Dissociating mismatch and error signal 63 

It is intuitively plausible that the magnitude of a perturbation should matter for how easy it 64 

is to detect (Hudson & Landy, 2012; Modchalingam et al., 2019), and experimental results 65 

back this up (Gaffin-Cahn et al., 2019). However, differential effects of introducing 66 

perturbations abruptly vs. gradually (Modchalingam et al., 2023; Orban De Xivry et al., 2013) 67 

demonstrate that this is not the whole story: For example, Orban De Xivry et al. (2013)  68 

found motor-evoked potentials to change following abruptly, but not gradually introduced 69 

force-field perturbations, and previous work also found stronger learning for greater EMG-70 

feedback response to error (Albert & Shadmehr, 2016). In a similar vein, Modchalingam et al. 71 

(2023) showed that gradually introduced perturbations can lead to a larger implicit 72 

adaptation and that identifying the schedule of introducing the perturbation matters. One 73 

potential explanation for this is that as motor actions change through error-correction, this 74 

in turn changes the error signal. 75 

With an abrupt perturbation schedule (Figure 1), the change in size difference 76 

between seen and felt size (mismatch) occurs only in the first perturbed trial but the 77 

mismatch itself remains constant over all following trials. This implies initially larger error 78 

signals for the first trial – however, through sensorimotor adaptation the error signal 79 

decreases with every trial, which might affect detectability of the mismatch. For sinusoidal 80 

perturbations on the other hand, the size difference changes more subtly with every trial. 81 

Trial-by-trial error correction models will then predict the error signal to be smaller initially 82 

but without systematic decline, and no asymptotic behavior. If participants anticipated the 83 

sinusoidal perturbation schedule, asymptotically decreasing error would also be possible 84 

here – yet empirically, adaptation under noisy conditions has been shown to be much more 85 

non-specific (Wei et al., 2010). Knowing how the detection of perturbation evolves over time 86 
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for different perturbation schedules could hence be an important component of the more 87 

general question of what inherent properties make perturbations detectable. 88 

Our experiments investigated the respective contributions of these two factors by 89 

dissociating the mismatch (magnitude of the perturbation) and the sensory error signal (i.e., 90 

the difference between the expected outcome and the observed outcome) and assess their 91 

impact on perturbation detection and adaptation in a grasping task. To do this, we asked 92 

participants to grasp real cuboids of different lengths in a mirror-setup with visuo-haptic 93 

mismatches and then compare felt and seen lengths. Using either an abrupt or a sinusoidal 94 

(Hudson & Landy, 2012) perturbation schedule to introduce size mismatches allowed us to 95 

dissociate the mismatch and the error signal. If the error signal is crucial for detecting 96 

perturbations, we would expect a high detection performance for the first perturbed trials in 97 

abrupt schedules followed by decreasing performance over the subsequent trials with the 98 

constant mismatch, but no decreasing detection performance for sinusoidal perturbations 99 

with a consistently moderate error signal. 100 

Methods 101 

We asked participants to grasp cuboids while looking in a front-silvered mirror (Figure 1A), 102 

allowing us to present different sizes for seen objects (in front of the mirror) and the felt 103 

object (behind the mirror), respectively. As a perturbation schedule that would allow 104 

participants to fully adapt, we used an abrupt schedule (Figure 1B) consisting of a short 105 

baseline period followed by a constant mismatch between seen and felt size. To dissociate 106 

the magnitude of the mismatch from the error signal (difference between perturbation 107 

(green line) and the modelled response (black dots)), we also introduced mismatches more 108 

gradually on a trial-wise base following a sinusoidal schedule (Figure 1C) (suggested, e.g., by 109 

Hudson & Landy, 2012), resulting in initially smaller error signals without systematic 110 

decrease. The mismatch magnitudes from the abrupt schedules were used as the maximum 111 

mismatch of the different sinusoids. Participants were then asked to judge the relative size 112 

of the objects to assess perturbation detection. While this 2AFC question did not allow us to 113 

infer detectability on a trial-wise basis, since there is no way to distinguish between a correct 114 

guess by chance and the participant knowing the correct answer, we could analyze mean 115 

performance changes over trials, taking chance level into account.  116 



Adaptation and perturbation detection  5 

We first conducted a pilot experiment (N = 24) to test whether there would be any 117 

difference in detection performance between the two perturbation schedules. Analyses 118 

showed a decrease in detection performance over trials when perturbations were 119 

introduced abruptly and then stayed constant, compared to a relatively constant 120 

performance over time (as well as overall better performance) with sinusoidal perturbations. 121 

We then aimed to replicate this in our main experiment with a larger sample (N = 48) as well 122 

as improved methods. 123 

Participants 124 

Participants were recruited via a TU-Chemnitz online mailing list. All were right-handed by 125 

self-report, had no motor impairments in their arm and a normal or corrected-to-normal 126 

vision. All participants reported being sufficiently rested and focused in a questionnaire 127 

administered prior to the experiment, were naïve to the hypotheses and debriefed after the 128 

experiment. 129 

 Our pilot experiment was conducted with a total of N = 24 participants, of which 23 130 

were analyzed (one excluded due to a high proportion of missing data), including 16 women 131 

and 7 men with an average age of 23.5 years (between 19 and 32). This sample size gave us 132 

sufficient statistical power to detect a medium to large effect (power of .8 for d = 0.6; Cohen, 133 

1988); however, we did not have a reasonable estimate for the expected effect in the size-134 

comparison task before the pilot experiment. In the main experiment we analyzed a sample 135 

of N = 48 participants including 34 women and 14 men with an average age of 23.1 years 136 

(between 18 and 53). As the difference in JNDs in our pilot experiment did indeed turn out 137 

to be a medium effect (d = 0.6), we based our power analysis on a medium effect of d = 0.5, 138 

for which we needed N = 44 to achieve .9 power. Both experiments lasted about two hours 139 

and participants received either course credit or a monetary reimbursement of 8€/h in the 140 

pilot experiment or 10 €/h in the main experiment. All experimental procedures were in 141 

accordance with the 2013 Declaration of Helsinki and were approved by the appropriate 142 

body (pilot: Chemnitz University of Technology, Faculty of Behavioral and Social Sciences 143 

ethics committee, reference no. V-329-PHKP-WET-Adaptation-10052019; main experiment: 144 

Chemnitz University of Technology ethics committee, reference no. 101568507). Participants 145 

had been fully informed about the study prior the experiment and participant data were 146 

protected according to institutional regulations. 147 
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Setup and procedure 148 

Participants were seated at a table, 30 cm in front of a front-silvered mirror aligned 45 149 

degrees to their gaze orientation (Figure 1A), their head in a chin rest. They saw aluminum 150 

cuboids with a 15 mm * 15 mm base (seen objects), while behind the mirror at the same 151 

position where the seen objects appeared to be, cuboids for grasping whose length was 152 

sometimes perturbed (felt objects) were placed. Participants could not look behind the 153 

mirror and thus did not see the felt objects or their own hand during grasping. The grasping 154 

movement was tracked (for 5 s at 200 Hz in the pilot and for 3 s at 500 Hz in the main 155 

experiment, respectively) using the Optotrak 3D Investigator (Northern Digital Inc., 156 

Waterloo, Canada) with four active markers fixated on the thumb, index finger, the wrist, 157 

and near the felt object to enable us to estimate the hand’s distance to the target. 158 

In the pilot experiment, the seen objects were constant over blocks (but varied 159 

between blocks at either 40 mm or 45 mm length), whereas the felt objects were replaced 160 

with every trial by the experimenter (or inconspicuously repositioned if the felt object 161 

remained the same). Each trial started with a verbal signal by the experimenter (“jetzt”, 162 

German for “now”). Participants had their right hand in a starting position on the table and 163 

were instructed to directly grasp the object behind the mirror with their thumb and index 164 

finger in a precision grip (Napier, 1956) and lift it up at about 5 cm. They then verbally 165 

indicated whether the felt object was larger or smaller than the seen object. 166 

In the main experiment, we slightly modified the setup and procedure. The setup was 167 

improved by using more seen objects with different lengths (40 mm, 44 mm, and 48 mm) 168 

varying between trials by using a rotation disk. To control visibility and to indicate the start 169 

of a trial, we used LCD shutter goggles (PLATO goggles, Milgram, 1987). At the start of each 170 

trial, the LCD goggles opened, and participants again saw the cuboid in the mirror, grasped 171 

it, and responded whether the felt object was larger or smaller than the seen object, this 172 

time using a response box. We emphasized accuracy and not speed in both experiments. 173 

After the response, the LCD goggles closed, and the seen object changed while the 174 

experimenter prepared the corresponding felt object. 175 

Stimuli and manipulations 176 

The pilot and the main experiment consisted of one practice block (12 trials) at the 177 

beginning and 12 experimental blocks, separated in 6 blocks following different perturbation 178 
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schedules. These schedules varied between abrupt (24 trials, 4 non-perturbed baseline trials 179 

at the beginning and the end of a block, respectively) and sinusoidal (36 trials, 3 cycles; first 180 

trial of each block was non-perturbed). In the pilot experiment, all cycles started with a 181 

positive perturbation, in the main experiment, half of the sinusoidal blocks started with a 182 

negative perturbation. The lengths of the seen cuboids were either 40 mm or 45 mm in the 183 

pilot experiment, with a block-wise change, and 40 mm, 44 mm, or 48 mm with a 184 

randomized trial-wise change in the main experiment. The corresponding felt cuboids for 185 

abrupt and maximum mismatch of the sinusoid were presented in the pilot experiment with 186 

perturbation magnitudes of ±4 mm, ±8mm and ±12 mm and in the main experiment with ±3 187 

mm, ±6 mm and ±12 mm relatively to these seen object sizes. These felt cuboids varied 188 

between 28 mm and 60 mm with a minimal step size of 0.5 mm for the sinusoidal schedule. 189 

For the pilot experiment, the smallest perturbation magnitude was chosen to be roughly the 190 

size of the JNDs for visual-haptic size comparisons as reported in Hillis et al. (2002). The 191 

magnitude for the main experiment was adapted from the JNDs of the pilot experiment with 192 

a larger range to capture possible smaller JNDs. Block order for the pilot experiment was 193 

fully randomized and for the main experiment counterbalanced over participants using a 194 

combination of four 12 x 12 Latin-squares. 195 

Data processing 196 

For interpolating the motion capture data from the Optotrak measurements to deal with 197 

missing values, we applied a cubic-spline and used a Savitzky–Golay Filter (Savitzky & Golay, 198 

1964) with a window of 200 ms to smooth the signal. This data was analyzed in R (R Core 199 

Team, 2022), extracting the maximum grip aperture (MGA), movement time (time difference 200 

between movement start and touching the object) and time to MGA (time difference 201 

relative to movement start). We set the start of the grasping movement through a velocity 202 

criterion (thumb and index velocity > 0.05 m/s) and we used a combination of an aperture-203 

velocity criterion and a position criterion to determine when the object was “touched” 204 

(aperture velocity < 0.1 m/s [pilot] or < 0.075 m/s [main experiment], and mean point 205 

between index finger and thumb nearer than 300 mm [pilot] or 150 mm [main experiment] 206 

to the center of the target object; these differences resulted from using two slightly different 207 

sets of markers in the two experiments). Such a combination of criteria has been shown to 208 

be robust in grasp-movement segmentation (Schot et al., 2010). The MGA then was defined 209 

as the maximum aperture before the “touched” event, extracted for each trial and our 210 
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foundation for further adaptation models. Trials were excluded from analysis if (i) the MGA 211 

was at a point where the trajectory had been interpolated, (ii) more than 20% of frames 212 

between movement start and touching the object were missing, (iii) the detected MGA was 213 

implausibly small (i.e., smaller than the object length), or (iv) the MGA was detected as an 214 

outlier for being more than 3 interquartile ranges removed from the participant's median 215 

MGA for the same seen and felt size. This way, we excluded 5.3 % (pilot) and 1.9 % (main) of 216 

trials from analysis. 217 

Modelling grasping and error-correction 218 

When grasping, people have to adjust their grip aperture to the size of the different objects 219 

to be grasped. How they grasp different objects has been calibrated through thousands of 220 

previous grasps to ensure successful and comfortable grasps and is often quantified in terms 221 

of the MGA. This measure has the desirable property that it scales reliably and 222 

monotonically with object size (Smeets & Brenner, 1999). However, people usually open 223 

their fingers more widely than the actual object size, and do not scale their grip perfectly 224 

with object size, so the object size has to be related to the typical MGA via a response 225 

function. This is typically modelled as a linear function consisting of an intercept 𝑖𝑛𝑡 and a 226 

𝑠𝑙𝑜𝑝𝑒 (Säfström & Edin, 2004) that determines scaling with seen object size 𝑣𝑡: 227 

     𝑀𝐺𝐴𝑣𝑡
= 𝑖𝑛𝑡 + 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑣𝑡    (1) 228 

This formula describes non-perturbed everyday grasping with identical seen and felt object 229 

size. We can then model the participants’ response to perturbations by introducing a state 230 

𝑥𝑡 representing a visuomotor mapping (Hayashi et al., 2016) that can be thought of as an 231 

alteration to movement planning when the participant sees the object and prepares to grasp 232 

it, which in the model is simply added to seen object size 𝑣𝑡: 233 

𝑀𝐺𝐴𝑚𝑜𝑑𝑡
= 𝑖𝑛𝑡 + 𝑠𝑙𝑜𝑝𝑒 ∗ (𝑣𝑡 + 𝑥𝑡)   (2) 234 

For a normal non-perturbed grasp, 𝑥𝑡 = 0 and the response function is identical to equation 235 

1, as no adjustment to a perturbation has taken place. When introducing size-perturbations 236 

in which seen size 𝑣𝑡 and felt size ℎ𝑡 are dissociated, the adjustment can be modelled using a 237 

linear state-space model (Wolpert et al., 1995) in which 𝑥𝑡 is updated from trial to trial. Such 238 

models are commonly used to describe visuomotor adaptation (Thoroughman & Shadmehr, 239 
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2000), formalizing the idea of sensorimotor adaptation to be a consequence of correcting 240 

motor errors on a trial-wise basis, and are frequently written as 241 

          𝑥𝑡+1 = 𝐴𝑥𝑡 − 𝑏𝐸𝑡     (3) 242 

where 𝑥𝑡 is the state at time point 𝑡, changing from trial to trial depending on the error 243 

term. 𝐴 and 𝑏 are parameters representing state retention and error-correction, bounded 244 

between 0 and 1, respectively. An 𝐴 = 0 means no retention of the previous state, whereas 245 

𝐴 = 1 indicates perfect retention. A value of 𝑏 = 0 means no error-correction from one trial 246 

to the next, while 𝑏 = 1 indicates complete error-correction. The error signal 𝐸𝑡 reflects the 247 

amount by which the participant’s grip was too large or too small, and so leads to an 248 

adjustment of the expected object size for the next grasp. As the error signal only depends 249 

on the haptic feedback, we use the felt size ℎ𝑡 and the response function from equation 1 to 250 

estimate which MGA would result in a comfortable grip given the object being grasped, and 251 

compare this to the observed (measured) MGA. Thus, the calculation rests on the difference 252 

between the current observed 𝑀𝐺𝐴𝑡 and the MGA based on the felt size: 253 

𝐸𝑡 = 𝑀𝐺𝐴ℎ𝑡
−  𝑀𝐺𝐴𝑡     (4)   254 

              = (𝑖𝑛𝑡 + 𝑠𝑙𝑜𝑝𝑒 ∗ ℎ𝑡) −  𝑀𝐺𝐴𝑡    255 

Further, calculating the next state based on the error signal, error-correction parameter 𝑏 256 

and retention parameter 𝐴 were fitted as free parameters on a block-wise basis. As we had 257 

previously done (Kopiske et al., 2017), we decided to also fit the intercept, but not the slope 258 

of the response function. This was for two main reasons: One, given its large variability and 259 

absolute numeric values, a poorly estimated intercept would mask any other effects in the 260 

data. Two, the slope parameter is inherently related to others, such as 𝑏, as both indicate a 261 

responsiveness (to size, or to errors); thus, we did not fit this parameter and used the overall 262 

mean slope. Free parameters were fitted using the nloptr package in R (Ypma, 2014) to 263 

minimize the root mean squared error (RMSE) between the observed MGAs and the 264 

modelled MGAs given state 𝑥𝑡 and the seen sizes, described in equation 5 for a block of 𝑛 265 

trials: 266 

      𝑅𝑀𝑆𝐸 = √
∑ (𝑀𝐺𝐴𝑚𝑜𝑑𝑡

−𝑀𝐺𝐴𝑡)2𝑛
𝑡=1

𝑛
    (5) 267 
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Comparing the observed 𝑀𝐺𝐴𝑡 to the modelled 𝑀𝐺𝐴𝑚𝑜𝑑𝑡
 given seen size and the adjusted 268 

state follows the intuition that vision is used for action planning (as it is available before the 269 

action) and that the visuomotor mapping that is updated via the state 𝑥𝑡 relates seen object 270 

size to the associated grasp. Haptics on the other hand in our model affect grip apertures 271 

indirectly by updating the visuomotor mapping (more formally, the state) through error-272 

correction.1 273 

Main analyses 274 

Adaptation parameters from the MGA modelling were submitted to rmANOVAs with factors 275 

perturbation schedule and perturbation magnitude to test if the perturbation schedule or 276 

magnitude affected the extent of adaptation. For assessing perturbation detection 277 

performance and trends over trials, we fitted participant-wise linear slopes over the 278 

percentage correct across trials per perturbation schedule (abrupt, sinusoidal) and 279 

perturbation magnitude (pilot: 4mm, 8mm, 12mm; main: 3mm, 6mm, 12mm) and 280 

conducted a 2x3 repeated-measures analysis of variance (rmANOVA) with these two factors 281 

and the slopes as the dependent variable. Trials in which seen and felt object were equally 282 

large were excluded from these analyses, because the correct answer (equal) was not 283 

available for the participants. Additionally, we calculated separate rmANOVAs on absolute 284 

percent correct, testing the main effect of perturbation magnitude for each schedule. We 285 

then computed JNDs for each participant and perturbation schedule by fitting a cumulative 286 

normal distribution psychometric function using the quickpsy package (Linares & López-287 

Moliner, 2016) in R and compared them using paired t-tests. JNDs integrate the information 288 

of all trials while taking perturbation magnitude into account, providing an overview of 289 

detection performance and a straightforward way to compare performance in the two 290 

schedules. Further, we looked at the correlation of detection slopes and JNDs per participant 291 

with the mean error-correction parameter for each participant, each averaged across 292 

perturbation schedules, to investigate inter-individual effects of detection performance and 293 

adaptation. Given the importance of null differences, we also calculated Bayes factors for 294 

differences in the mean error-correction parameters between schedules, for differences in 295 

 
1 To account for participants adjusting their grip differently when they were aware of the perturbation, we also 
considered a model that contained two separate parameters for correction after correctly and incorrectly 
judged trials, respectively. We fitted both models for each block and compared their fit using Akaike’s 
information criterion (Burnham et al., 2011). We then chose the better-fitting model, which was the simple 
state-space model (equation 3), for further analyses. 
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the overall mean JNDs (Rouder et al., 2009), each using a medium-width prior (r = 0.707 as 296 

used by Morey & Rouder, 2018), as well as for all correlation analyses (with a medium-width 297 

prior of r = 0.333). We report Cohen’s d (Cohen, 1988) as an effect size. Data and analysis 298 

scripts are available at 299 

https://osf.io/2569y/?view_only=a510888d9fc84961aee087f859d2c3dc. 300 

Results 301 

Adaptive behavior and error-correction 302 

First we investigated whether participants indeed adapted their grips to perturbations. We 303 

analyzed if there were effects of the perturbation schedule and magnitude on the adaptation 304 

of grasping by looking at the MGA (Figure 2). We tested the scaling of object sizes with the 305 

MGAs by fitting a response function (MGA ~ seen size) over the mean MGAs per participant 306 

over all seen object sizes. We found mean slopes of 0.93 (pilot) and 0.32 (main experiment), 307 

so MGAs scaled with the object sizes, albeit somewhat weakly in the more complex main 308 

experiment (Smeets & Brenner, 1999).  309 

To assess the extent of sensorimotor adaptation, we applied the error-correction 310 

model (equation 3) to the observed MGA for each block of each participant (an example is 311 

shown in Figure 3, mean parameters in Table 1). We found significant differences for the 312 

error-correction parameter (𝑏) in the pilot experiment depending on the perturbation 313 

schedule, F(1,22) = 11.94, p = .002, but not the perturbation magnitude, F(2,44) = 1.84, 314 

p = .171, with no interaction, F(2,44) = 2.91, p = .065. A Bayesian t-test comparing the two 315 

schedules showed the same effect (BF10 = 17.5), confirming that mean error-correction 316 

parameters 𝑏 were larger for abrupt perturbations (0.28) than for sinusoidal perturbations 317 

(0.20). These differences were replicated in the main experiment, with a main effect for 318 

perturbation schedule, F(1,47) = 148.19, p < .001, and 𝑏`s of 0.45 for abrupt and 0.20 for 319 

sinusoidal, respectively (BF10 > 1000) and again with no effect for perturbation magnitude, 320 

F(5,235) = 0.85, p = .516, but with a significant interaction, F(5,235) = 3.21, p = .008, 321 

indicating that 𝑏`s were not entirely independent of magnitude (Table 1). 322 

Development of detection performance over trials 323 

We then investigated how the detection performance developed over trials (Figure 4). 324 
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The 2x3 rmANOVA on fitted slopes over trials with the factors perturbation schedule 325 

and perturbation magnitude showed a main effect of perturbation schedule, F(1,22) = 14.18, 326 

p = .001 in the pilot experiment, indicative of a stronger decline in correct responses for the 327 

abrupt schedule (decreasing 0.5% per trial) than for the sinusoidal schedule (increasing 328 

0.07% per trial). As shown in Figure 4 (left column), this decline was present both early and 329 

later in the experimental blocks. There was no effect on slopes for perturbation magnitude, 330 

F(2,44) = 0.33, p = .723, nor an interaction, F(2,44) = 2.12, p = .133. 331 

 In the main experiment, we found the same main effect for perturbation schedule, 332 

F(1,47) = 30.64, p < .001 on slopes over trials (decreasing 0.8% per trial for abrupt, increasing 333 

0.03% per trial for sinusoidal) but not for perturbation magnitude, F(2,94) = 1.27, p = .286, 334 

nor for the interaction F(2,94) = 1.69, p = .191. Note that this main effect refers to the slope 335 

of correctness across trials, not absolute percent correct, which obviously differs between 336 

magnitudes within each schedule for the pilot (abrupt: F(2,44) = 35.58, p < .001; sinusoidal: 337 

F(2,44) = 42.47, p < .001) and main experiment (abrupt: F(2,94) = 98.66 , p < .001; sinusoidal: 338 

F(2,94) = 221.28, p < .001) but cannot be compared between schedules due to different 339 

frequencies of perturbation magnitudes (hence the JND analysis below which takes 340 

magnitudes into account).  341 

Comparing the mean percentage of correct responses of maximum-magnitude 342 

mismatches in sinusoidal trials (dashed lines Figure 4) with the non-adapted trials of the 343 

abrupt schedule (each 5th trial, the first perturbed trial of each block) for the corresponding 344 

magnitude show roughly similar performance (Table 2) in the pilot experiment. This was 345 

replicated in the main experiment. 346 

Comparing overall detection performance 347 

To assess overall detection performance, we calculated the JND for each participant per 348 

schedule (Figure 5). 349 

In the pilot experiment, we found a statistically smaller mean JND for sinusoidally 350 

introduced perturbations (JND = 3.4 ± 1.3 mm) than for abrupt perturbations 351 

(JND = 4.4 ± 1.7 mm; paired t-test for differences: 𝑡(22) = 2.76, p = .011, d = .6). A 352 

corresponding Bayesian t-test found moderate support for a difference, BF10 = 4.4.  353 

In the main experiment, we found the same pattern, with a smaller mean JND for 354 

sinusoidal (JND = 4.2 ± 1.4 mm) than for abrupt (JND = 6.0 ± 2.9 mm; paired t-test for 355 

differences: t(47) = 5.25, p < .001, d = .8) perturbations. Bayesian analysis showed very 356 
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strong evidence for an effect of the perturbation schedule, BF10 > 1000. The results are 357 

consistent with a similar baseline level for each schedule (Figure 4) with the performance 358 

decrease over trials for abrupt perturbations resulting in an overall higher JND. 359 

Relation between perturbation detection and error-correction 360 

Next, we tested whether the relation between adaptation and detection performance also 361 

holds at the individual level (i.e., whether individuals with stronger adaptation do worse in 362 

the size-comparison task). 363 

Correlations between individuals’ mean slopes of percent correct over trials and the 364 

mean error-correction parameter, showed in the pilot experiment for the abrupt schedule a 365 

correlation of 𝑟𝑠𝑙𝑜𝑝𝑒𝑠,𝑏 = -0.07 and for the sinusoidal schedule of 𝑟𝑠𝑙𝑜𝑝𝑒𝑠,𝑏 = -0.38. In the main 366 

experiment, we found a correlation for abrupt of 𝑟𝑠𝑙𝑜𝑝𝑒𝑠,𝑏 = -0.12 and for sinusoidal of 367 

𝑟𝑠𝑙𝑜𝑝𝑒𝑠,𝑏 = -0.01. None of these correlations were statistically significant (all p values > .07), 368 

with all Bayesian tests (0.4 < BFs < 2.4) indicating indecisive evidence. 369 

The same was true for the correlation between mean JNDs and the mean error-370 

correction parameter 𝑏 per participant across both schedules (Figure 6), with no strong 371 

relation either in the pilot experiment for abrupt with 𝑟𝐽𝑁𝐷,𝑏 = -0.37 or sinusoidal with 372 

𝑟𝐽𝑁𝐷,𝑏 = -0.26, nor in the main experiment for abrupt with 𝑟𝐽𝑁𝐷,𝑏= -0.12 and sinusoidal with 373 

𝑟𝐽𝑁𝐷,𝑏= 0.08. Again, t-tests showed no significant relationships, and Bayesian evidence was 374 

indecisive (all p values > .075, and 0.35 < BFs < 2). 375 

Discussion 376 

Here, we used different perturbation schedules that allowed different levels of sensorimotor 377 

adaptation in order to dissociate the respective effects of a perturbation's magnitude and 378 

the associated error signal on the detection performance of visuo-haptic size mismatches in 379 

grasping. Consistent with the idea that the error signal plays a key role, participants’ 380 

detection performance was worse overall in schedules when they could adapt more strongly 381 

their grip to the mismatch (abrupt), as detectability decreased. Conversely, performance 382 

stayed the same over trials when the mismatch changed continuously (sinusoidal), ensuring 383 

continuous adaptation. Interestingly and unexpectedly, while participants adapted their grip 384 

apertures to both sinusoidal and abrupt perturbations, error-correction parameters were 385 

notably higher for abruptly introduced perturbations. Participants’ MGAs also scaled less 386 

with object size when a more complex setup was used in the main experiment, perhaps 387 
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indicative of higher uncertainty about object size particularly on short time scales (Hewitson 388 

et al., 2023). Changes in detection performance and strength of adaptation were not 389 

correlated across individuals, which could be for several reasons – such as the bidirectional 390 

relationship between the two, i.e., stronger adaptation leading to worse detection by 391 

minimizing the error signal, but better detection leading to stronger adaptation by enabling 392 

explicitly controlled adjustments. 393 

Current models of sensorimotor adaptation incorporate both explicit and implicit 394 

components (Miyamoto et al., 2020), which have different properties and complement each 395 

other. Concerns about studying one component without the nuisance of the other being 396 

present have been discussed for a long time (Held & Gottlieb, 1958; Maresch et al., 2021). 397 

The magnitude of the perturbation (Hudson & Landy, 2012), its abrupt or gradual onset 398 

(Orban De Xivry et al., 2013) as well as adaptation and thus the associated error signal 399 

(Gaffin-Cahn et al., 2019; Modchalingam et al., 2023) have been suggested to make 400 

perturbations detectable and adaptation potentially explicit (Acerbi et al., 2017; Tsay, 401 

Avraham, et al., 2021; Tsay, Kim, et al., 2021), but we know of no direct test of these 402 

predictions. Here, we show that indeed, these factors all matter: We see clear effects of 403 

perturbation magnitude on detection performance overall, as well as decreasing 404 

performance when participants adapt (Figure 4), and comparable performance in completely 405 

un-adapted trials and maximum-magnitude trials of gradually introduced perturbations, 406 

respectively. Thus, the intuitive notion that a gradually introduced perturbation could make 407 

perturbations harder to detect was not supported by our data. We do, however, show 408 

clearly that participants’ ability to judge even initially well-detected perturbations can 409 

decrease over repeated exposure. Thus, researchers need to consider participants’ ability 410 

both to detect when a perturbation is introduced and to judge whether it remains the same. 411 

Some modeling and experimental design choices should be considered with respect 412 

to the generalizability of our results. We modelled error-correction with a difference 413 

between observed MGA and MGA predicted from felt object size (i.e., the deviation from a 414 

typical, comfortable grasp of the felt object) as the error signal. Using the observed MGA, 415 

which inevitably contains noise, implies that participants can use random, non-systematic 416 

movement errors to adjust their movements. There is evidence that they do, though it is 417 

unclear to what extent (Van Dam & Ernst, 2013). The error signal can also differ between 418 

experiments not just in terms of modelling: Conceptually, having feedback once, at the end 419 
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of the movement, and in a different modality (haptic) than the one used to plan the 420 

movement (vision), makes grasping physical objects distinct from certain other actions such 421 

as pointing or walking. However, this makes grasping perhaps even more suited to a design 422 

with a judgment required after each trial, since alerting participants to a potential 423 

perturbation is less of a problem if there is no closed feedback loop. Similarly, in addition to 424 

choosing a task, we also had to choose how gradual a “gradually introduced” perturbation 425 

really is, which likely affects how well the perturbation at peak magnitudes is masked. We 426 

also note that while we argue that changes in detection performance following adaptation 427 

are likely consequences of the reduced error signal, another interpretation is that this effect 428 

is a form of sensory attenuation (Shergill et al., 2003) caused by the participant’s increasingly 429 

precise predictions of the sensory outcome of the grasp. Finally, while unlike many other 430 

studies our paradigm allows comparing perturbation detection in earlier vs. later trials, the 431 

relative length judgments participants gave allow such inferences only on average and not 432 

for single trials. Thus, it is also not surprising that a simple state-space model fits our data 433 

well, as we cannot say with certainty when exactly participants may have been using explicit 434 

strategies to adapt their grip. In future work, it may be useful to model fast and slow 435 

processes that have been linked to explicit and implicit adaptation (McDougle et al., 2015) – 436 

however, these are known to occur on the order of >100 trials (Smith et al., 2006) and 437 

consequently require more trials per schedule than our design allowed. A design with more 438 

trials per block, and potentially perturbation schedules where anticipation of the next trial is 439 

impossible for principle reasons, such as a quasi-random perturbation schedule (Acerbi et 440 

al., 2017), would allow a more direct test of properties of implicit vs. explicit adaptation – 441 

here, this was not the main goal. Our key finding of participants struggling to judge 442 

perturbations after repeated exposure can also not cleanly be dissociated from participants’ 443 

tendencies to alter responses after a while (Bosch et al., 2020): While participant fatigue is 444 

not a plausible explanation as sinusoidal schedules (with no signs of performance decline) 445 

contained more trials than abrupt schedules, the perturbation and thus the correct answer 446 

was the same for 16 straight trials in abrupt-perturbation schedules. To circumvent this 447 

issue, other approaches such as using physiological markers like pupillometry as proxies of 448 

detection (Yokoi & Weiler, 2022) may be promising. 449 

To understand sensorimotor adaptation, it is becoming increasingly clear that one 450 

needs to understand both its implicit and explicit components, as well as their interplay 451 
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(Miyamoto et al., 2020). Rather than treating cognition and awareness of errors or 452 

perturbations as a confounder, a more ecological approach would be to “incorporate the 453 

influence of cognitive planning into any realistic and comprehensive model of human 454 

sensorimotor learning” (McDougle et al., 2016, p. 542). We concur, and show here that in a 455 

common everyday task, one can dissociate the respective effects of a sensory mismatch and 456 

the error signal on perturbation detection, with performance markedly deteriorating over 457 

repeatedly presented perturbations. This has implications for the design of experimental 458 

investigations, as well as understanding the cognitive side of real-world motor behavior. 459 
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    650 

Figure 1. Experimental setup and different perturbation schedules 651 
Left: A: Bird's-eye view of the experimental setup. Participants were sitting at a table, wearing the 652 
LCD goggles, and looking in a front-silvered mirror. In front of this mirror, the seen objects were 653 
placed on the turntable besides the response box for the 2AFC task. Behind the mirror and not visible 654 
for the participant, the felt objects were positioned at the imaginary same position as the seen 655 
objects appear when looking in the mirror. Right: Schematic illustration of two different perturbation 656 
schedules and modelled responses (y axis) across trials (x axis). The green line indicates the 657 
perturbation, the black dots show the corresponding responses with adaptation modelled following 658 
equation 3 and with parameters 𝐴 = 0.95 and 𝑏 = 0.2, similar to those obtained using a similar setup 659 
and the same model in Kopiske et al. (2017). Panels adapted from Hudson and Landy (2012). B: 660 
Perturbation occurs abruptly after a baseline phase and ends abruptly to return to baseline level for 661 
the washout phase. Responses show the typical exponential function towards an asymptote, 662 
followed by an exponential decay during washout. C: Perturbation is induced gradually following a 663 
sinusoidal schedule. The adaptation shows a shift in phase and a slightly reduced magnitude. 664 
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 665 

 666 

Figure 2. Mean MGAs per trial 667 
Mean observed MGAs per trial (baseline-corrected) over all participants, separated by perturbation 668 
schedule for all perturbation magnitudes (upper panel: pilot, bottom panel: main). Non-perturbed 669 
trials for the abrupt schedule are shown transparently. MGAs roughly show the abrupt perturbation 670 
pattern (increasing or decreasing correspondingly) and show a phasic pattern in the sinusoidal 671 
perturbation blocks. Data from the main experiment is moreover divided into positive and negative 672 
sinusoidal perturbation, following their perturbation magnitude at the block start, resulting in an 673 
anti-phasic pattern of the mean MGAs. 674 
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   675 

   676 

Figure 3. Example of modelled MGAs with adaptation parameters 677 
Error-correction model (red line) applied at the observed MGAs (red dots indicate raw data) for the 678 
abrupt (A) and sinusoidal (B) perturbation schedule (green dot-line) of one participant of the main 679 
experiment. Panels C and D show the differences between the observed 𝑀𝐺𝐴𝑡 (blue dots) and the 680 
modelled 𝑀𝐺𝐴𝑚𝑜𝑑𝑡

 given seen size (black dots) and the expected 𝑀𝐺𝐴ℎ𝑡
 given the felt size for the 681 

corresponding block to panels A and B, respectively. Thin green lines show the perturbation. Panels A 682 
and B show how the model 𝑀𝐺𝐴𝑚𝑜𝑑𝑡

 fits the observed 𝑀𝐺𝐴𝑡. Panels C and D show how model 683 
predictions are updated: Whenever 𝑀𝐺𝐴𝑡 - 𝑀𝐺𝐴ℎ𝑡

 is positive, 𝑀𝐺𝐴𝑚𝑜𝑑𝑡
 is corrected downwards 684 

(because the previous grasp was “too large”), by an amount scaled by 𝑏 and the slope of the 685 
response function and vice versa. An error-correction parameter 𝑏 (e.g. of 0.44 for the block plotted 686 
in panels A and C) indicates a mean correction of the deviation from the real MGA to the predicted 687 
state of 44 % in each trial. Note the model (noisily) approaching an asymptote in the abrupt 688 
perturbation schedule (A and C) and lagging behind the perturbation in the sinusoidal perturbation 689 
schedule (C and D). 690 
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Table 1 691 

Mean adaptation parameter with 95% confidence interval. 692 

Pilot / 

Main 

   magnitude 
 

schedule 
-12 mm 

-8 mm / 

-6 mm 

-4 mm / 

-3 mm 

4 mm /  

3 mm 

8 mm /  

6 mm 
12 mm 

P
ilo

t 
ex

p
er

im
en

t Abrupt 

A = 0.81 

[0.72;0.89] 

b = 0.27 

[0.19;0.34] 

A = 0.82 

[0.73;0.90] 

b = 0.24 

[0.18;0.31] 

A = 0.77 

[0.69;0.84] 

b = 0.32 

[0.22,0.42] 

A = 0.81 

[0.73;0.88] 

b = 0.28 

[0.19;0.37] 

A = 0.77 

[0.67;0.87] 

b = 0.32 

[0.24;0.40] 

A = 0.76 

[0.67;0.86] 

b = 0.28 

[0.19;0.37] 

Sinusoidal --- --- --- 

A = 0.68 

[0.62;0.74] 

b = 0.14 

[0.10;0.18] 

A = 0.65 

[0.59;0.71] 

b = 0.21 

[0.16;0.25] 

A = 0.62 

[0.57;0.67] 

b = 0.25 

[0.20;0.31] 

M
ai

n
 e

xp
er

im
en

t Abrupt 

A = 0.91 

[0.86;0.95] 

b = 0.45 

[0.40;0.51] 

A = 0.91 

[0.87;0.95] 

b = 0.46 

[0.40;0.52] 

A = 0.89 

[0.84;0.93] 

b = 0.42 

[0.35;0.48] 

A = 0.93 

[0.90;0.96] 

b = 0.48 

[0.42;0.54] 

A = 0.91 

[0.87;0.95] 

b = 0.47 

[0.41;0.52] 

A = 0.91 

[0.86;0.95] 

b = 0.41 

[0.36;0.46] 

Sinusoidal 

A = 0.75 

[0.70;0.81] 

b = 0.24 

[0.17;0.31] 

A = 0.72 

[0.67;0.78] 

b = 0.17 

[0.11;0.23] 

A = 0.74 

[0.69;0.80] 

b = 0.18 

[0.12;0.24] 

A = 0.73 

[0.68;0.78] 

b = 0.15 

[0.10;0.21] 

A = 0.73 

[0.67;0.78] 

b = 0.19 

[0.13;0.25] 

A = 0.84 

[0.78;0.89] 

b = 0.29 

[0.23;0.36] 

Note: Adaptation parameter values for the pilot and the main experiment, obtained by using a 693 
percentile bootstrap with 10,000 repetitions (Efron & Tibshirani, 1993), indicating retention (𝐴) and 694 
error-correction (𝑏) for each block, separated in perturbation schedule and magnitude. 695 
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 696 

 697 

Figure 4. Correct responses over trials 698 
Percentages of correct responses in the 2AFC task over trials and the overall percentages correct for 699 
each perturbation magnitude (green, blue, red). The upper row shows the pilot experiment, the 700 
bottom row the main experiment, separated in abrupt and sinusoidal, respectively. On the y axis are 701 
the percentages of correct responses for the corresponding trial on the x axis, either for the trial 702 
itself (column 1 and 3, respectively) or related to the absolute mean of all trials in a half sinus-cycle 703 
(column 2), that is 5 positive or 5 negative mismatches, sinus-scaled related to the corresponding 704 
maximum perturbation magnitude of one block. Dashed lines in the abrupt panels indicate the mean 705 
percentage correct of sinusoidal trials with the maximum-magnitude mismatch, respectively. These 706 
compared with the un-adapted trials of the abrupt schedule (each 5th trial) show roughly similar 707 
performance. Over all subsequent trials, the detection performance for the abrupt schedule 708 
decreases compared to the 5th trial. Note that a half-cycle (middle column) contains each magnitude 709 
in the sinusoidal perturbation schedule exactly once and therefore does not confound perturbation 710 
magnitude and detection performance, whereas performance by trial (right column) is confounded 711 
by the systematic differences in perturbation magnitude. The gray dashed trace shows the 712 
underlying sine wave for perturbation magnitude; note that the percentage of correct responses is 713 
modulated at twice the speed of the perturbation sine wave (hence the half-cycle). That is, it closely 714 
follows the shape of the absolute values of the underlying perturbation, being maximal at the 715 
extreme points (independent of whether these were peaks or troughs), and minimal around the zero 716 
points (black dots). 717 
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Table 2 718 

Mean percentage of correct responses for first-perturbed (abrupt) and maximum-perturbed 719 
(sinusoidal) trials with between participants’ standard deviation. 720 

 Pilot Main 

mismatch abrupt sinusoidal abrupt sinusoidal 

4 mm / 3 mm 82.6 ± 38 % 89.9 ± 30 % 76.0 ± 43 % 75.2 ± 43 % 

8 mm / 6 mm 95.7 ± 21 % 96.7 ± 18 % 87.5 ± 33 % 90.6 ± 29 % 

12 mm 100 ± 0 % 97.8 ± 15 % 99.0 ± 1 % 99.5 ± 1 % 

Note: Mean percentages of correct responses over participants per perturbation magnitude for each 721 
first-perturbed trial (5th trial) in the abrupt schedule and the mean of the maximum-magnitude trials 722 
in the sinusoidal schedule with corresponding standard deviation, separately for pilot and main 723 
experiment. 724 
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               725 

               726 

Figure 5. Psychometric function and mean JNDs for each participant 727 
Analysis of the 2AFC task separately for pilot experiment (upper row) and main experiment (bottom 728 
row). A and C: Psychometric functions of each participant for abrupt and sinusoidal perturbations 729 
with their corresponding mean JND (horizontal dotted line) and point of subjective equality (PSE, 730 
vertical dotted line). The x axis shows the mismatch between the felt and the seen size; the y axis the 731 
probability that the felt object was responded to be larger than the seen object. Shaded lines 732 
indicate one participant, the red line the overall mean fit. B and D: Mean JND of each participant for 733 
abrupt and sinusoidal perturbations. The dashed dots show one participant, the larger red dot shows 734 
the overall mean. 735 
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 736 

Figure 6. Detection performance and error-correction 737 
Correlation of slopes of percent correct (upper row) or JNDs (bottom row) with the error-correction 738 
parameter (𝑏) for the pilot and the main experiment, for each perturbation schedule. The x axis 739 
shows the mean slope (%) and JND (mm) and the y axis the error-correction parameter 𝑏. Each dot 740 
represents one participant, the grey line shows the Deming-corrected (Deming, 1943) regression line. 741 

 


